Fibre Chemistry

, Volume 43, Issue 3, pp 245–249 | Cite as

Recovery of zinc from wastes of viscose fiber production by an acid—base method

  • Yu. V. Matveichuk
  • A. V. Oboturov
  • V. V. Yasinetskii

The zinc content in wastes of viscose fiber production is 14.3 ± 0.5%. The present article proposes to perform reprocessing of the wastes by a method that avoids roasting and electrolysis. Zinc is extracted from the wastes by solutions of H2SO4 (4 M) and HCl (4 M) (preferred) at 70 °C for 3 h. The final reprocessing product is zinc oxide. The zinc-oxide content in the resulting ZnO samples is 99.2 ± 0.4%. A conceptual diagram of the method was developed.


Zinc Zinc Oxide Zinc Sulfide Zinc Chloride Viscose Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. E. Artemenko and G. P. Ovchinnikova, Ecological Problems of Chemical Fiber Production [in Russian], Sarat. Gos. Tekh. Univ., (1991).Google Scholar
  2. 2.
    V. I. Boiko,Ya. D.Korol, and Yu.A. Shafarost, “Electrochemical recovery of zinc from slags of VAT Cherkassy Khimvolokno,” in: Proceedings of the IVth International Conference “Collaboration to Solve Waste Problems” [in Russian], Jan. 31-Feb. 1, 2007, Kharkov (2007), pp. 110.112.Google Scholar
  3. 3.
    A. I. Kudryavtsev, E. D. Dzyuba, et al., Khim. Volokna, No. 3, 60–61 (1989).Google Scholar
  4. 4.
    Yu. V. Matveichuk and V. V. Yasinetskii, “Processing and ecological aspects of reprocessing of zinc-containing wastes of viscose fiber production,” in: Abstracts of Papers of the VIIth International Scientific-Technical Conference “Technique and Technology of Food Production” [in Russian], May 21–22, 2009, Mogilev, p. 13.Google Scholar
  5. 5.
    Yu. V. Matveichuk, “Processing aspects of reprocessing zinc-containing wastes of industrial production,” in: Proceedings of the XIVth International Ecological Student Conference “Ecology of Russia and Adjoining Territories” [in Russian], Novosib. State Univ., Novosibirsk (2009), pp. 156–157.Google Scholar
  6. 6.
    V. S. Khomich, T. I. Kukharchik, and S. V. Kakareka, Pochvovedenie, No. 4, 430–440 (2004).Google Scholar
  7. 7.
    A. L. Tseft, Hydrometallurgical Methods for Reprocessing Polymetallic Raw Materials [in Russian], Vol. 1, Alma-Ata (1976).Google Scholar
  8. 8.
    A. O. Adebayo, K. O. Ipinmoroti, and O. O. Ajayi, J. Min. Mater. Charact. Eng., 5, No. 2, 167–177 (2006).Google Scholar
  9. 9.
    P. A. Olubambi, J. O. Borode, and S. Ndlova, J. South. Afr. Inst. Min. Metall., 106, 765–770 (2005).Google Scholar
  10. 10.
    L. A. Voropanova and L. G. Baratov, Vestn. Vladikavkaz. Nauchn. Tsent., 9, No. 3, 59–63 (2009).Google Scholar
  11. 11.
    R. L. Frost, M. C. Hales, et al., J. Therm. Anal. Calorim., 92, No. 3, 911–916 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • Yu. V. Matveichuk
    • 1
  • A. V. Oboturov
    • 1
  • V. V. Yasinetskii
    • 1
  1. 1.Mogilev State Food UniversityMogilevRepublic of Belarus

Personalised recommendations