Advertisement

Fibre Chemistry

, Volume 42, Issue 3, pp 129–142 | Cite as

High-strength, high-modulus fibres made from linear polymers: principles of fabrication, structure, properties, and use

  • K. E. Perepelkin
Chemistry and Technology of Chemical Fibres

The current types of ultrastrong and high-modulus fibres made from linear fibre-forming polymers — structure, principles of fabrication, properties, and basic areas of application — are examined. Most of the attention is focused on carbocyclic and heterocyclic para-aramid fibres, whose production capacities have reached 60,000 tons a year, the features of their structure and properties and areas of application. High-strength fibres made from other types of aromatic polymers (poly-p-phenylene benzobisoxazoles and thiazoles, polyarylates, polyvinyl alcohol, ultrahigh-molecular-weight polyethylene) are also briefly examined.

Keywords

Oxygen Index Hydrogen Chloride Deformation Modulus Polyethylene Fibre Polyarylates 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

I would like to thank A. S. Andreev and E. A. Pakshver for reviewing the manuscript and their advice and comments.

References

  1. 45.
    K. E. Perepelkin, Mekh. Kompozitn. Mater., No. 3, 387-395 (1987).Google Scholar
  2. 46.
    K. E. Perepelkin, Khim. Volokna, No. 4, 3-11 (2004).Google Scholar
  3. 47.
    K. E. Perepelkin, “Russian aromatic fibres,” in: High-Performance Fibres, J. W. S. Hearle (ed.), Woodhead Publishing, Cambridge (2001), pp. 115-132, 146-154.Google Scholar
  4. 48.
    B. Wulfhorst and A. Busgen, Chemiefasern/Textilindustrie, Separate reprint, 39/91 (1989).Google Scholar
  5. 49.
    K. E. Perepelkin, Khim. Volokna, No. 1 (2009).Google Scholar
  6. 50.
    K. E. Perepelkin, Structure and Properties of Fibres [in Russian], Khimiya, Moscow (1985).Google Scholar
  7. 51.
    GOST 28007-88.Google Scholar
  8. 52.
    ASTM D 2343-95.Google Scholar
  9. 53.
    K. E. Perepelkin, Ros. Khim. Zh., 46, No. 1, 31-48 (2002).Google Scholar
  10. 54.
    K. E. Perepelkin, Mekh. Kompozitn. Mater., No. 3, 291-306 (1992).Google Scholar
  11. 55.
    K. E. Perepelkin, Chem. Vlakna, 39, No. 3, 92-114 (1989).Google Scholar
  12. 56.
    L. V. Avrorova, A. V. Volokhina, et al., Khim. Volokna, No. 4, 21-26 (1989).Google Scholar
  13. 57.
    K. E. Perepelkin and N. N. Matchalaba, Mol. Cryst. A. Liquid Cryst. Ser. Sci. Technol., 354, 275-286 (2000).CrossRefGoogle Scholar
  14. 58.
    K. E. Perepelkin, N. N. Machalaba, et al., Vestn. Mosk. Gos. Tekst. Un-ta, No. 4, 142-147 (1999).Google Scholar
  15. 59.
    K. E. Perepelkin and N. N. Machalaba, Vestn. Sankt-Peterburgsk. Gos. Un-ta Tekhnol. Dizaina, No. 4, 64-83 (2000).Google Scholar
  16. 60.
    S. K. Mukhopadhyay, High Performance Fibres, The Textile Institute, Manchester (1993).Google Scholar
  17. 61.
    E. S. Tsobkallo, Doctoral Dissertation, St. Petersburg State University of Technology and Design, St. Petersburg (2002).Google Scholar
  18. 62.
    N. N. Matchalaba and K. E. Perepelkin, Inst. Chem. Fibres, No. 14, 204-223 (2001).Google Scholar
  19. 63.
    K. E. Perepelkin, N. N. Machalaba, and V. A. Kvaratskheliya, Khim. Volokna, No. 2, 22-29 (2001).Google Scholar
  20. 64.
    K. E. Perepelkin and M. N. Ivanov, Anthology Dedicated to the 100th Anniversary of the Birth of A. N. Solov’ev [in Russian], A. N. Kosygin Moscow State Textile University, Moscow (2008), pp. 17-30.Google Scholar
  21. 65.
    K. E. Perepelkin and m. N. Ivanov, Vestn. Sankt-Peterburgsk. Un-ta Tekhnol. Dizaina, No. 14, 33-42 (2007).Google Scholar
  22. 66.
    K. E. Perepelkin and M. N. Ivanov, “Evaluation of the quality of chemical fibres and their processability,” Izd. SGUTD, St. Petersburg (2010) (in press).Google Scholar
  23. 67.
    J. W. S. Hearle, B. Lomas, and W. D. Cooke, Atlas of Fibre Fracture and Damage to Textiles, 2nd ed., Woodhead Publishing, Cambridge (1999, reprinted 2006).Google Scholar
  24. 68.
    K. E. Perepelkin, Khim. Volokna, No. 3, 25-33 (2009).Google Scholar
  25. 69.
    K. E. Perepelkin, I. V. Andreeva, et al., Khim. Volokna, No. 4, 22-25 (2003).Google Scholar
  26. 70.
    K. E. Perepelkin, E. N. Dresvyanina, and E. A. Pakshver, Khim. Volokna, No. 3, 72-75 (2008)l.Google Scholar
  27. 71.
    I. V. Andreeva, A. B. Stepanova, and K. E. Perepelkin, Research in Textile Materials Science [in Russian], A. N. Kosygin Moscow State Textile University, Moscow (2007), pp. 330-336.Google Scholar
  28. 72.
    A. A. Askadskii and S. V. Myzylev, in: V International Symposium on Chemical Fibres [in Russian], Preprints, Vol. 1, VNIIISV, Kalinin (1991), pp. 124-128.Google Scholar
  29. 73.
    A. V. Volokhina and A. M. Shchetinin, Khim. Volokna, No. 2, 14-22.Google Scholar
  30. 74.
    A. V. Volokhina, Khim. Volokna, No. 4, 11-19 (2003).Google Scholar
  31. 75.
    M. A. Tyuganova, Doctoral Dissertation, All-Union Scientific Research Institute of Fibres, Mytishchi (1988).Google Scholar
  32. 76.
    A. Ya. Ivanov, Doctoral Dissertation, A. S. Kosygin Moscow State Textile Academy, Moscow (1985).Google Scholar
  33. 77.
    E. V. Byzova, K. E. Perepelkin, and G. P. Meshcheryakova, Khim. Volokna, No. 5, 34-37 (2003).Google Scholar
  34. 78.
    N. P. Lebedeva, K. E. Perepelkin, and G. P. Meshcheryakova, Khim. Volokna, No. 5, 34-37 (2003).Google Scholar
  35. 79.
    K. E. Perepelkin, S. F. Grebennikov, and N. P. Lebedeva, Khim. Volokna, No. 5, 50-52 (2007).Google Scholar
  36. 80.
    N. Ya. Konovalova, M. M. Iovleva, et al., Khim. Volokna, No. 2, 49-51 (2003).Google Scholar
  37. 81.
    M. M. Iovleva, L Ya. Konovalova, et al., Khim. Volokna, No. 1, 22-25 (2001).Google Scholar
  38. 82.
    M. M. Iovleva, N. M. Smirnova, et al., Khim. Volokna, No. 2, 29-31 (2001).Google Scholar
  39. 83.
    D. V. Min’kov, V. Yu. Lakunin, et al., Khim. Volokna, No. 1, 21-23 (2006).Google Scholar
  40. 84.
    A. V. Zarin, A. S. Andreev, et al., High-Strength Reinforcing Fibres [in Russian], NIITEKhim, Moscow (1983).Google Scholar
  41. 85.
    A. V. Volokhina, et al., Fibres from Thermotropic Polymers [in Russian], NIITEKhim, Moscow (1985).Google Scholar
  42. 86.
    A. V. Volokhina, Khim. Volokna, No. 3, 42-48 (1990).Google Scholar
  43. 87.
    G. A. Budnitskii, A. V. Volokhina, and N. V. Lukasheva, Topics in Defense Technology. Ser. 15. Nonmetallic Composite Materials in Machine Building [in Russian], No.s 3-4, NTTs Informatika, Moscow (1996), pp. 7-9.Google Scholar
  44. 88.
    D. J. Sikkema, Book of Abstracts, Conference, Mulhouse France, Institut Textile de France, Mulhouse (1977), pp. 23-25.Google Scholar
  45. 89.
    K. E. Perepelkin, in: Carbochain Synthetic Fibres K. E. Perepelkin (ed.), Khimiya, Moscow (1973), pp. 165-354.Google Scholar
  46. 90.
    M. M. Zwick, Appl. Polym. Symposia, 6, 109-149 (1967).Google Scholar
  47. 91.
    M. M. Zwick, J. A. Duiser, and C. Van Bochove, in: Properties and Applications of Polyvinyl Alcohol, Publ. Soc. Chem. Ind., London (1968), pp. 198-207.Google Scholar
  48. 92.
    K. Yamamura, T. Tanigami, N. Hayashi, et al., “Preparation of high modulus poly(vinyl) alcohol by drawing,” J. Appl. Polym. Sci., 40, 905-916 (1990).CrossRefGoogle Scholar
  49. 93.
    K. E. Perepelkin, Structure and Properties of Fibres [in Russian], Khimiya, Moscow (1985).Google Scholar
  50. 94.
    Yu. I. Mitchenko, V. I. Kuzub, et al., Fabrication of Ultrahigh-Strength High-Modulus Polyethylene Fibres by the Gel Technology Method [in Russian], NIITEKhim, Moscow (1988).Google Scholar
  51. 95.
    A. Ciferri and I. Ward (eds.), UltraHigh-Modulus Polymers, Applied Science, London (1979).Google Scholar
  52. 96.
    Polinit Co. www.polinit.ru
  53. 97.
    P. M. Pakhomov, V. P. Golitsin, et al., Khim. Volokna, No. 5, 6-11 (2005).Google Scholar
  54. 98.
    Kurashiki Rayon Co. Ltd. Prospectuses (1965, 2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • K. E. Perepelkin
    • 1
  1. 1.St. Petersburg University of Technology and DesignSt. PetersburgRussia

Personalised recommendations