Advertisement

Fibre Chemistry

, Volume 39, Issue 5, pp 372–378 | Cite as

Production of polypropylene microfibres containing a filler in the nanostate

  • M. V. Tsebrenko
  • N. M. Rezanova
  • E. P. Kuvaeva
  • A. A. Sap’yanenko
  • L. S. Dzyubenko
  • P. P. Gorbik
Article
  • 31 Downloads

Abstract

Solid nanosize Aerosil additives almost do not alter the properties of melts of PP/CPA blends. Melts of three-component blends are strengthened in a longitudinal velocity gradient field, manifested by a sharp increase in the maximum possible spinneret drawing. Nanosize Aerosil additives do not prevent realization of specific fibre formation in flow of melts of PP/CPA blends. As a result of stabilization of the liquid jets of PP in a CPA matrix, thinner (up to 0.30–0.15 µm) microfibres are formed with low dispersion of the distribution by diameters. This increases the specific surface area by 3–4 times. Nanofilled PP microfibres and new filter materials that combine high output and efficiency (99.999% with respect to 0.3 µm particles) were made for the first time. Aerosil additives act as crystallization centers during spinning of PP microfibres, which prevents the liquid jets from breaking down into drops. Incorporation of highly disperse Aerosils can be a method of regulating crosslinking of the polymer in the disperse phase in the matrix polymer.

Keywords

Polymer Blend Aerosil Filter Material Fibre Formation Caprolactam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mihail C. Rocco, R. S. Williams, and P. Alivisatos (eds.), Nanotechnology Research Directions, Kluwer Academic, Dordrecht, Netherlands (2000).Google Scholar
  2. 2.
    M. V. Tsebrenko, N. M. Rezanova, and I. A. Tsebrenko, Khim. Volokna, No. 4, 25–31 (2002).Google Scholar
  3. 3.
    V. G. Rezanova and M. V. Tsebrenko, Khim. Volokna, No. 2, 21–26 (2003).Google Scholar
  4. 4.
    G. I. Taylor, Proc. Roy. Soc. London, A, 146, 501–526 (1934).Google Scholar
  5. 5.
    S. P. Gubin, Ros. Khim. Zh., 44, No. 6, 23–31 (2000).Google Scholar
  6. 6.
    L. A. Utracki, Z. Bakerdijiane, and M. R. Kamal, J. Appl. Polym. Sci., 19, No. 19, 481–501 (1975).CrossRefGoogle Scholar
  7. 7.
    R. V. Lutsik, E. S. Malkin, and I. I. Abarzhi, Heat and Mass Exchange in Processing Textile Materials [in Russian] Naukova, Dumka, Kiev (1993).Google Scholar
  8. 8.
    G. S. Katz and J. V. Milevsky (eds.), Handbook for Fillers in Reinforcement of Plastics, Van Nostrand Reinhold, Los Alamos, New Mexico (1978).Google Scholar
  9. 9.
    M. V. Tsebrenko, N. M. Rezanova, et al., Funkts. Mater., 2, No. 3, 362 (1995).Google Scholar
  10. 10.
    M. V. Tsebrenko, G. V. Vinogradov, et al., Kolloidn. Zh., 38, No. 1, 200–203 (1976).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • M. V. Tsebrenko
    • 1
  • N. M. Rezanova
    • 1
  • E. P. Kuvaeva
    • 1
  • A. A. Sap’yanenko
    • 2
  • L. S. Dzyubenko
    • 2
  • P. P. Gorbik
    • 2
  1. 1.Kiev National University of Technology and DesignUkraine
  2. 2.Institute of Surface ChemistryNational Academy of Sciences of UkraineUkraine

Personalised recommendations