Fibre Chemistry

, Volume 38, Issue 5, pp 365–369 | Cite as

Study of the rheological properties of melts of polypropylene and poly(butylene terephthalate) blends

  • E. V. Kovaleva
  • V. V. Lapkovskii
  • N. V. Shevlik
  • B. E. Geller


The viscosity properties of melts of fibre-forming polypropylene (PP) and poly(butylene terephthalate) blends were investigated in the entire range of ratios at different stresses and shear rate gradients at 230–250°C. It was shown that melts of fibre-forming PP and PBT blends are weakly crosslinked systems. The effect of the mass ratio of PP and PBT on the apparent activation energy of viscous flow of melts of the blends was investigated at different shear stresses and shear rate gradients. It was hypothesized that this blend can be assigned to the group of limitedly compatible systems. The probability of compatibility of the polymers in the melt appears when up to 20% PBT is incorporated in the PP. The blends are not compatible for the remaining ratios of polymers in the investigated system.


Rheological Property Apparent Activation Energy Viscous Flow Polymer Blend Effective Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Tager and V. S. Blinov, Usp. Khim., No. 6, 1004–1023 (1987).Google Scholar
  2. 2.
    B. E. Geller, Some Characteristics of Wet Spinning of Carbochain Fibres, Doctoral Dissertation, Leningrad Textile Institute, Leningrad (1964).Google Scholar
  3. 3.
    Yu. S. Lipatov, Colloid Chemistry of Polymers [in Russian], Naukova Dumka, Kiev (1984).Google Scholar
  4. 4.
    V. N. Kuleznev, Polymer Blends [in Russian], Khimiya, Moscow (1980).Google Scholar
  5. 5.
    A. A. Askadskii and V. I. Kondrashchenko, Computer Materials Science of Polymers. Vol. 1. The Atomic-Molecular Level [in Russian], Nauchnyi Mir, Moscow (1999).Google Scholar
  6. 6.
    B. E. Geller, A. A. Geller, et al., Kolloidn. Zh., No. 3, 391–395 (1972).Google Scholar
  7. 7.
    Yu. B. Monakov and B. E. Geller, in: Synthesis and Properties of Polymers [in Russian], Izd. Akad. Nauk SSSR, Ufa (1974), pp. 102–107.Google Scholar
  8. 8.
    I. Z. Zakirov, Physical Modification of Polyacrylonitrile Fibre [in Russian], Fan, Tashkent (1982).Google Scholar
  9. 9.
    A. Polson, Koll.-Z., 88, 51 (1939).CrossRefGoogle Scholar
  10. 10.
    V. E. Gul’ and V. N. Kuleznev, Structure and Mechanical Properties of Polymers [in Russian], Vysshaya Shkola, Moscow (1972).Google Scholar
  11. 11.
    S. M. Lipatov (ed.), Physical Chemistry of Multicomponent Polymer Systems [in Russian], Vol. 2, Naukova Dumka, Kiev (1986).Google Scholar
  12. 12.
    H. D. Noethen, J. Polym. Sci. C, No. 16, 725–753 (1964).Google Scholar
  13. 13.
    M. Yokouchi, Y. Sakakibara, Y. Chatani, et al., Macromolecules, 9, No. 2, 266–273 (1976).CrossRefGoogle Scholar
  14. 14.
    I. V. Akhortorr, Z. I. Salina, et al., Plast. Massy, No. 4, 7–8 (1992).Google Scholar
  15. 15.
    V. V. Lapkovskii and B. E. Geller, in: Proceedings of the International Scientific and Technical Conference “Latest Advances in Replacing Imports in the Chemical Industry and Production of Construction Materials” [in Russian], BGTU, Minsk (2004).Google Scholar
  16. 16.
    A. O. Lupezheva, N. I. Mashukov, and T. A. Borukaev, Plast. Massy, No. 11, 36–37 (2001).Google Scholar
  17. 17.
    O. V. Romankevich, A. D. Petukhov, and E. V. Butusov, Vestn. Gos. Akad. Leg. Prom-sti Ukr., No. 1, 27–29 (1999).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. V. Kovaleva
    • 1
  • V. V. Lapkovskii
    • 2
  • N. V. Shevlik
    • 1
  • B. E. Geller
    • 3
  1. 1.Mogilevkhimvolokno OJSCBelarus
  2. 2.Mogilev Man-Made Fibre Plant OJSCBelarus
  3. 3.Mogilev State University of FoodBelarus

Personalised recommendations