Advertisement

Fibre Chemistry

, Volume 38, Issue 2, pp 127–132 | Cite as

Flow of polymer systems in the viscoelastic state through round capillaries. Deformation analysis

  • Yu. A. Vinogradov
Chemistry and Technology of Chemical Fibres
  • 25 Downloads

Abstract

Flow of polymer systems in the viscoelastic state through a capillary is considered a deformation process; the deformation characteristics used were the equilibrium shear modulus GR, equilibrium relaxation time θR, and parameter m, and the product of the shear gradient by the equilibrium relaxation time So = θRqo was used as the shear deformation.

Keywords

Shear Deformation Polymer System Deformation Characteristic Methyl Acrylate Chemical Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Vinogradov, Physical Chemistry of Polymers [in Russian], 8th ed., Tver’ (2002), p. 252.Google Scholar
  2. 2.
    G. V. Vinogradov and A. Ya. Malkin, Polymer Rheology [in Russian], Khimiya, Moscow (1977).Google Scholar
  3. 3.
    G. V. Vinogradov, A. Ya. Malkin, and V. F. Shumskii, Vysokomolek. Soedin., 10, No. 12, 2673 (1968).Google Scholar
  4. 4.
    A. I. Isaev, Inzh.-Fiz. Zh., 23, No. 5, 846 (1972).Google Scholar
  5. 5.
    E. Bernhard (ed.), Processing of Thermoplastic Materials, Kreiger, Malabar (1959).Google Scholar
  6. 6.
    Yu. A. Tsvetkova, E. V. Samardukov, et al., Plast. Massy, No. 8, 46 (1981).Google Scholar
  7. 7.
    Y. Peyser, J. M. Dealy, and M. R. Kamal, J. Appl. Polym. Sci., 15, No. 8, 1963 (1971).CrossRefGoogle Scholar
  8. 8.
    L. A. Utracki, A. M. Catani, and G. L. Bata, J. Appl. Polym. Sci., 27, No. 6, 1913 (1982).CrossRefGoogle Scholar
  9. 9.
    G. V. Vinogradov, A. Ya. Malkin, and V. F. Shumskii, in: Advances in Polymer Rheology [in Russian], Khimiya, Moscow (1970), p. 52.Google Scholar
  10. 10.
    C. D. Denson, W. M. Prest, and J. M. O’Reilly, A. I. Ch. E.Y., 15, No. 6, 809 (1969).Google Scholar
  11. 11.
    T. J. Ablazova, M. B. Tsebrenko, et al., J. Appl. Polym. Sci., 19, No. 7, 1781 (1975).CrossRefGoogle Scholar
  12. 12.
    G. V. Vinogradov, A. Ya. Malkin, et al., Dokl. Akad. Nauk SSSR, 150, No. 3, 574 (1963).Google Scholar
  13. 13.
    D. Acierno, J. H. Dalton, et al., J. Appl. Polym. Sci., 15, No. 5, 2395 (1971).CrossRefGoogle Scholar
  14. 14.
    B. V. Radushkevich, Candidate Dissertation, All-Union Scientific-Research Institute of Synthetic Fibres, Kalinin (1970).Google Scholar
  15. 15.
    E. A. Pakshver, Khim. Volokna, No. 1, 33 (1963).Google Scholar
  16. 16.
    L. M. Beder, Candidate Dissertation, All-Union Scientific-Research Institute of Synthetic Fibres, Kalinin (1974).Google Scholar
  17. 17.
    A. I. Ignatova, E. A. Pakshver, and S. A. Semenova, in: Carbochain Fibres [in Russian], Khimiya, Moscow (1966), p. 9.Google Scholar
  18. 18.
    L. N. Zubov, A. P. Neverov, and E. A. Pakshver, Ibid., p. 150.Google Scholar
  19. 19.
    V. Z. Volkov, V. D. Fikhman, et al., Inzh.-Fiz. Zh., 32, No. 1, 83 (1977).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yu. A. Vinogradov
    • 1
  1. 1.Scientific-Research Institute of Synthetic FibresTver’

Personalised recommendations