Fibre Chemistry

, Volume 38, Issue 1, pp 66–74 | Cite as

Mechanisms of fracture and prediction of the strength of unidirectional carbon-fibre-reinforced plastics

  • Yu. G. Korabel’nikov


The principal difference in the mechanisms of fracture of unbound carbon fibres and reinforcing filler in unidirectional carbon-fibre-reinforced plastics does not allow predicting the strength of composites using Weibull distribution parameters and the average strength of the fibres on a standard testing base. An alternative approach that allows estimating the limiting strength of carbon fibres and the degree of its realization in a composite was repeatedly tested. The dependence of the strength realization coefficient of a reinforcing fibre on its volume content, the scaling effect of the strength, and the modulus of elasticity is given. The information required for predicting the strength of composites could be obtained from testing composites with a single fibre (SFC tests).


Polymer Organic Chemistry Carbon Fibre Standard Testing Weibull Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fibre Composite Materials [Russian translation], Mir, Moscow (1967).Google Scholar
  2. 2.
    Proceedings of the First Soviet-American Symposium “Fracture of Composite Materials” [in Russian], Zinatne, Riga (1979), pp. 13–25.Google Scholar
  3. 3.
    Al. Al. Berlin, S. A. Vol’fson, et al., Principles of Creation of Composite Polymeric Materials [in Russian], Khimiya, Moscow (1990), pp. 8–12, 117–125.Google Scholar
  4. 4.
    Yu. G. Korabel’nikov, The Informativeness of Some Methods of Investigating Mechanisms of Failure of Construction Plastics [in Russian], Sputnik+, Moscow (2004), pp. 294–379.Google Scholar
  5. 5.
    Yu. G. Korabel’nikov, V. M. Bondarenko, et al., Mekh. Kompozitn. Mater., No. 6, 963–967 (1980).Google Scholar
  6. 6.
    D. E. Gruser and J. Gurland, J. Mech. Phys. Solids, 10, 365–378 (1962).CrossRefGoogle Scholar
  7. 7.
    W. Weibull, Ing. Vetensk. Akad. Handl., 153–154 (1939).Google Scholar
  8. 8.
    A. Kelly and W. R. Tyson, High-Strength Materials, John Wiley, New York (1965), pp. 578–594.Google Scholar
  9. 9.
    V. P. Tamuzh, M. T. Azarova, et al., Mekh. Kompozitn. Mater., No. 1, 34–41 (1982).Google Scholar
  10. 10.
    B. D. Coleman, J. Mech. Phys. Solids, 7, 60–73 (1958).CrossRefGoogle Scholar
  11. 11.
    Yu. G. Korabel’nikov, I. A. Kumok, et al., USSR Inventor’s Certificate No. 1805628, Method of Modification of Carbon Fibre Material, Filed on November 17, 1989; Registered: USSR State Patent Registration (October 9, 1992).Google Scholar
  12. 12.
    K. E. Perepelkin, A. V. Geller, and V. Ya. Varshavskii, Mekh. Kompozitn. Mater., No. 1, 134–137 (1981).Google Scholar
  13. 13.
    Yu. G. Korabel’nikov, V. P. Tamuzh, et al., Mekh. Kompozitn. Mater., No. 2, 195–200 (1984).Google Scholar
  14. 14.
    Yu. G. Korabel’nikov, O. F. Siluyanov, et al,. Mekh. Kompozitn. Mater., No. 2, 270–274 (1987).Google Scholar
  15. 15.
    A. M. Lekovskii et al., in: Physics of the Strength of Composite Materials [in Russian], FTI im. A. F. Ioffe, Leningrad (1979), pp. 256–262.Google Scholar
  16. 16.
    S. T. Mileiko, in: Failure of Composite Materials [in Russian], Zinatne, Riga (1979), pp. 13–16.Google Scholar
  17. 17.
    I. A. Rashkovan, T. Yu. Zakharova, and I. I. Krasova, Khim. Volokna, No. 3, 43–44 (1991).Google Scholar
  18. 18.
    W. D. Bascom, R. M. Jenson, and L. W. Cordner, “The adhesion of carbon fibers to thermoplastic polymers,” in: 6th Conf. on Comp. Mat. (IICCM-ZZ), F. L. Matheus et al. (eds.), Vol. 5, Elsevier Appl. Sci., London (1987), pp. 424–438.Google Scholar
  19. 19.
    H. D. Wagner and A. Eitan, Appl. Phys. Lett., 56, No. 20, 1965–1967 (1990).CrossRefGoogle Scholar
  20. 20.
    Yu. G. Korabel’nikov, I. A. Rashkovan, et al., 1704015, Method of Determination of the Scale Dependence of Fibre Strength on Fibre Length, filed on 09.08.1989, published in Otkrytiya, Izobret., No. 1, 168–169 (1992).Google Scholar
  21. 21.
    V. P. Tamuzh, Yu. G. Korabel’nikov, et al., Mekh. Kompozitn. Mater., No. 4, 641–647 (1991).Google Scholar
  22. 22.
    I. A. Rashkovan, and Yu. G. Korabel’nikov, Mekh. Kompozitn. Mater., 33, No. 1, 98–103 (1997).Google Scholar
  23. 23.
    Y. G. Korabelnikov and I. A. Rashkovan, in: Int. SAMPE Tech. Conf., 28 (Technology Transfer in Global Community) (1996), pp. 313–323.Google Scholar
  24. 24.
    Yu. G. Korabel’nikov and I. A. Rashkovan, Khim. Volokna, No. 2, 39–43 (1996).Google Scholar
  25. 25.
    G. D. Andreevskaya, High-Strength Oriented Fibreglass Plastics [in Russian], Nauka, Moscow (1966), pp. 286–287.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yu. G. Korabel’nikov

There are no affiliations available

Personalised recommendations