Advertisement

Fibre Chemistry

, Volume 37, Issue 5, pp 332–337 | Cite as

High-Melting Oxide Fibres: Fabrication, Properties, and Use

  • T. M. Ul'yanova
  • N. P. Krut'ko
  • L. V. Titova
  • E. S. Paemurd
  • S. V. Medichenko
  • O. Yu. Kalmychkova
Article

Abstract

The mechanism of structure formation in fibrous oxides with complex architectonics, including metal oxide nanoparticles, nanopores, and microcapillaries, was established. Synthesis of oxide fibres includes two stages. In the first stage, thermal transformation of the polymer matrix and dissociation of salts with formation of metal oxides take place in heat treatment up to 600° C. Structural transformations of the oxides in the fibres and alteration of their physicochemical properties take place in the second stage. The oxide fibres have high porosity, a developed surface, and high reactivity due to the nanosize factor. Based on calculation of the size of the metal oxide crystallites, it was found that crystallographic transformations of the oxides cause dispersion of matter. The structural transformations of fibrous oxides are accompanied by a change in the character of the porosity and pore size. The mechanisms obtained can be used to predict the properties and regulate manufacturing technology for nanostructural fibrous oxide materials.

Keywords

Oxide Porosity Heat Treatment Metal Oxide Physicochemical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. C. Roco, R. S. Williams, and P. Alivisatos (eds.). Nanotechnology Research Directions, Kluwer Academic (2000).Google Scholar
  2. 2.
    A. L. Buchachenko, Usp. Khim., 72, No.5, 419–437 (2003).Google Scholar
  3. 3.
    A. L. Ivanovskii, Usp. Khim., 71, No.3, 203–224 (2003).Google Scholar
  4. 4.
    I. Brooks, P. Bunzel, et al., Veroffentlichungen einer Institut f?r Nanotechnologie, FKGmbH, Karlsruhe (2001), pp. 109–113.Google Scholar
  5. 5.
    P. Greil, Adv. Mater., 14, No.10, 709–716 (2002).CrossRefGoogle Scholar
  6. 6.
    Z. A. Rogovin, Cellulose Chemistry [in Russian], Khimiya, Moscow (1972).Google Scholar
  7. 7.
    I. N. Ermolenko, T. M. Ul'yanova, et al., Navuka i Tekhmka, Minsk (1991).Google Scholar
  8. 8.
    S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic, London-New York (1980).Google Scholar
  9. 9.
    Ya. S. Umanskii, X-Ray Diffractometry of Metals and Semiconductors [in Russian], Metallurgiya, Moscow (1969).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • T. M. Ul'yanova
    • 1
  • N. P. Krut'ko
    • 1
  • L. V. Titova
    • 1
  • E. S. Paemurd
    • 1
  • S. V. Medichenko
    • 1
  • O. Yu. Kalmychkova
    • 1
  1. 1.Institute of General and Inorganic ChemistryNational Academy of Sciences of Belarus'Belarus'

Personalised recommendations