Advertisement

Fibre Chemistry

, Volume 36, Issue 5, pp 365–369 | Cite as

Comparative evaluation of the thermal properties of aromatic fibres (polyoxazole, polyimide, and polyaramid)

  • K. E. Perepelkin
  • O. B. Malan’ina
  • E. A. Pakshver
  • R. A. Makarova
Materials Science

Abstract

The thermal properties of the aromatic fibres Arselon, Arselon-C, Arimid, and Armos, as-spun and heat-treated are investigated using methods of thermomechanical and dynamic thermogravimetric analysis and differential scanning calorimetry. According to the TMA data, Arselon, Arselon-C, Arimid, and heat-treated Armos fibres retain size stability up to 400°C. Shrinkage is no more than 1–2%. As-spun Armos fibres lengthen insignificantly (under 7%). The temperature characteristics of aromatic fibres obtained by TGA and DSC show that thermooxidative degradation markedly begins at temperature above 390–400°C.

Keywords

Polymer Organic Chemistry Differential Scanning Calorimetry Shrinkage Calorimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Konkin, A. A., Kudyavtseev, G. I.,  et al. 1978Thermostable, Heat-Resistant, and Nonflammable FibresKhimiyaMoscow[in Russian]Google Scholar
  2. 2.
    Gurova, E. Yu. 1993Effect of Thermal Aging on the Mechanical Properties of Fibres from Aromatic PolymersIzd. SPSUTDSt. PetersburgGoogle Scholar
  3. 3.
    Bolokhina, A. B. 2003Khim. Volokna41119Google Scholar
  4. 4.
    Perepelkin, K. E. 2001Russian aromatic fibersHearle, J. W. S. eds. High-Perfomance FibresWoodhead Publishing Ltd.Cambridge115132Google Scholar
  5. 5.
    Budnitskii, G. A., Volokhina, A. V.,  et al. 2003Tekst. Khim.35154Google Scholar
  6. 6.
    Perepelkin, K. E. 2004The Past, Present, and Future of Chemical FibresIzd. MGTUMoscow[in Russian]Google Scholar
  7. 7.
    K. E. Perepelkin, Chem. Fibers Intern., No. 2, 101–107 (2004).Google Scholar
  8. 8.
    R. A. Makarova, O. I. Pankina, et al., Tekhn. Tekstil’, No. 7, 27 (2003).Google Scholar
  9. 9.
    K. E. Perepelkin, I. V. Andreeva, et al., Khim. Volokna, No. 4, 22–26 (2004).Google Scholar
  10. 10.
    Panikarova, N. N., Rudinskaya, G. Ya.,  et al. 1975The Chemical Fibre IndustryNIITEKhimMoscow[in Russian]Google Scholar
  11. 11.
    Pavlova, S. A., Zhuravleva, I. V., Tolchinskii, Yu. I. 1983Thermal Analysis of Organic and Macromolecular CompoundsKhimiyaMoscow[in Russian]Google Scholar
  12. 12.
    Rabek, J. F. 1980Experimental Methods in Polymer ChemistryWiley InterscienceChinchester-NY-TorontoGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • K. E. Perepelkin
    • 1
  • O. B. Malan’ina
    • 1
  • E. A. Pakshver
    • 2
  • R. A. Makarova
    • 3
  1. 1.St. Petersburg State University of Technology and DesignRussia
  2. 2.All-Russian Scientific-Research Institute of Synthetic FibresTver’
  3. 3.Termostoikie Izdeliya Scientific-Production Co.Mytishchi

Personalised recommendations