Advertisement

Asia-Pacific Financial Markets

, Volume 23, Issue 2, pp 153–174 | Cite as

Analysis of the Nonlinear Option Pricing Model Under Variable Transaction Costs

  • Daniel Ševčovič
  • Magdaléna Žitňanská
Article

Abstract

In this paper we analyze a nonlinear Black–Scholes model for option pricing under variable transaction costs. The diffusion coefficient of the nonlinear parabolic equation for the price V is assumed to be a function of the underlying asset price and the Gamma of the option. We show that the generalizations of the classical Black–Scholes model can be analyzed by means of transformation of the fully nonlinear parabolic equation into a quasilinear parabolic equation for the second derivative of the option price. We show existence of a classical smooth solution and prove useful bounds on the option prices. Furthermore, we construct an effective numerical scheme for approximation of the solution. The solutions are obtained by means of the efficient numerical discretization scheme of the Gamma equation. Several computational examples are presented.

Keywords

Black–Scholes equation with nonlinear volatility Quasilinear parabolic equation Variable transaction costs 

Mathematics Subject Classification

35K15 35K55 90A09 91B28 

References

  1. Amster, P., Averbuj, C. G., Mariani, M. C., & Rial, D. (2005). A Black–Scholes option pricing model with transaction costs. Journal of Mathematical Analysis and Applications, 303, 688–695.CrossRefGoogle Scholar
  2. Ankudinova, J., & Ehrhardt, M. (2008). On the numerical solution of nonlinear Black–Scholes equations. Computers and Mathematics with Applications, 56, 799–812.CrossRefGoogle Scholar
  3. Avellaneda, M., Levy, A., & Paras, A. (1995). Pricing and hedging derivative securities in markets with uncertain volatilities. Applied Mathematical Finance, 2, 73–88.CrossRefGoogle Scholar
  4. Averbuj, C. G. (2012). Nonlinear integral-differential evolution equation arising in option pricing when including transaction costs: A viscosity solution approach. Revista Brasileira de Economia de Empresas, 12(1), 81–90.Google Scholar
  5. Bakstein, D., Howison, S. (2004). A non–arbitrage liquidity model with observable parameters. Working paper, http://eprints.maths.ox.ac.uk/53/
  6. Barles, G., & Soner, H. M. (1998). Option Pricing with transaction costs and a nonlinear Black–Scholes equation. Finance and Stochastics, 2, 369–397.CrossRefGoogle Scholar
  7. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81, 637–654.CrossRefGoogle Scholar
  8. Casabán, M. C., Company, R., Jódar, L., & Pintos, J. R. (2011). Numerical analysis and computing of a non-arbitrage liquidity model with observable parameters for derivatives. Computers and Mathematics with Applications, 61, 1951–1956.CrossRefGoogle Scholar
  9. Company, R., Navarro, E., Pintos, J. R., & Ponsoda, E. (2008). Numerical solution of linear and nonlinear Black–Scholes option pricing equations. Computers an Mathematics with Applications, 56, 813–821.CrossRefGoogle Scholar
  10. Dremkova, E., & Ehrhardt, M. (2011). High-order compact method for nonlinear Black–Scholes option pricing equations of American options. International Journal of Computer Mathematics, 88, 2782–2797.CrossRefGoogle Scholar
  11. During, B., Fournier, M., & Jungel, A. (2003). High order compact finite difference schemes for a nonlinear Black–Scholes equation. International Journal of Theoretical and Applied Finance, 7, 767–789.CrossRefGoogle Scholar
  12. Frey, R., Patie, P. (2002). Risk Management for Derivatives in Illiquid Markets: A Simulation Study. In: Advances in Finance and Stochastics, Springer, Berlin, pp. 137–159.Google Scholar
  13. Frey, R., & Stremme, A. (1997). Market volatility and feedback effects from dynamic hedging. Mathematical Finance, 4, 351–374.CrossRefGoogle Scholar
  14. Grandits, P., & Schachinger, W. (2001). Leland’s approach to option pricing: The evolution of a discontinuity. Mathematical Finance, 11, 347–355.CrossRefGoogle Scholar
  15. Grossinho, M. R., & Morais, E. (2009). A note on a stationary problem for a Black–Scholes equation with transaction costs. International Journal of Pure and Applied Mathematics, 51, 557–565.Google Scholar
  16. Hoggard, T., Whalley, A. E., & Wilmott, P. (1994). Hedging option portfolios in the presence of transaction costs. Advances in Futures and Options Research, 7, 21–35.Google Scholar
  17. Imai, H., Ishimura, N., Mottate, I., & Nakamura, M. (2007). On the Hoggard–Whalley–Wilmott equation for the pricing of options with transaction costs. Asia-Pacific Financial Markets, 13, 315–326.CrossRefGoogle Scholar
  18. Ishimura, N. (2010). Remarks on the nonlinear Black–Scholes equations with the effect of transaction costs. Asia-Pacific Financial Markets, 17, 241–259.CrossRefGoogle Scholar
  19. Jandačka, M., & Ševčovič, D. (2005). On the risk adjusted pricing methodology based valuation of vanilla options and explanation of the volatility smile. Journal of Applied Mathematics, 3, 235–258.CrossRefGoogle Scholar
  20. Kilianová, S., & Ševčovič, D. (2013). A transformation method for solving the Hamilton–Jacobi–Bellman equation for a constrained dynamic stochastic optimal allocation problem. ANZIAM Journal, 55, 14–38.CrossRefGoogle Scholar
  21. Koleva, M. N., & Vulkov, L. G. (2013). Quasilinearization numerical scheme for fully nonlinear parabolic problems with applications in models of mathematical finance. Mathematical and Computer Modelling, 57, 2564–2575.CrossRefGoogle Scholar
  22. Kratka, M. (1998). No mystery behind the smile. Risk, 9, 67–71.Google Scholar
  23. Kútik P., Mikula K. (2011). Finite volume schemes for solving nonlinear partial differential equations in financial mathematics. in proceedings of the sixth international conference on finite volumes in complex applications, Prague, June 6-10, 2011, Springer Proceedings in Mathematics, Volume 4, 2011, Eds: J.Fořt, J. Fürst, J.Halama, R. Herbin and F.Hubert, pp. 643-561,Google Scholar
  24. Kwok, Y. K. (1998). Mathematical models of financial derivatives. Berlin: Springer.Google Scholar
  25. Ladyženskaja, O. A., Solonnikov, V. A., and Ural’ceva, N. N. (1968). Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 (American Mathematical Society, Providence, R.I.Google Scholar
  26. Leland, H. E. (1985). Option pricing and replication with transaction costs. Journal of Finance, 40, 1283–1301.CrossRefGoogle Scholar
  27. Liao, W., & Khaliq, A. Q. M. (2009). High-order compact scheme for solving nonlinear Black–Scholes equation with transaction costs. International Journal of Computer Mathematics, 86, 1009–1023.CrossRefGoogle Scholar
  28. Mariani, M. C., Ncheuguim, E., & Sengupta, I. (2011). Solution to a nonlinear Black–Scholes equation. Electronic Journal of Differential Equations, 158, 1–10.Google Scholar
  29. Schönbucher, P., & Wilmott, P. (2000). The feedback-effect of hedging in illiquid markets. SIAM Journal of Applied Mathematics, 61, 232–272.CrossRefGoogle Scholar
  30. Ševčovič, D., Stehlíková, B., & Mikula, K. (2011). Analytical and numerical methods for pricing financial derivatives. Hauppauge: Nova Science Publishers Inc. 309 pp.Google Scholar
  31. Wilmott, P., Dewynne, J., & Howison, S. D. (1995). Option pricing: Mathematical models and computation. UK: Oxford Financial Press.Google Scholar
  32. Wilmott, P., Howison, S., & Dewynne, J. (1995). The mathematics of financial derivatives. USA: Press Syndicate of the University of Cambridge.CrossRefGoogle Scholar
  33. Zhou, S., Han, L., Li, W., Zhang, Y., & Han, M. (2015). A positivity-preserving numerical scheme for option pricing model with transaction costs under jump-diffusion process. Computational and Applied Mathematics, 34, 881–900.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Applied Mathematics and StatisticsComenius UniversityBratislavaSlovakia
  2. 2.Department of Mathematics and Actuarial ScienceUniversity of Economics in BratislavaBratislavaSlovakia

Personalised recommendations