Skip to main content
Log in

Risk of multiple colorectal cancer development depends on age and subgroup in individuals with hereditary predisposition

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Development of multiple colorectal cancers (CRCs), synchronously or metachronously, is associated with hereditary predisposition for cancer and accurate risk estimates of multiple tumour development are relevant to recommend rational surveillance programs. A cross-sectional study design was used to estimate the risks of synchronous CRC (SCRC) and metachronous CRC (MCRC) based on data from the National Danish Hereditary Nonpolyposis Register. In total, 7100 individuals from families within the subgroups Lynch syndrome, familial CRC (FCC) and moderate risk were used with estimates relative to a non-hereditary population control cohort. SCRC was diagnosed in 7.4% of the Lynch syndrome cases, in 4.2% of FCC cases and 2.5% of the moderate risk cases, which translated to relative risks of 1.9–5.6. The risk of MCRC was distinctively linked to Lynch syndrome with a life-time risk up to 70% and an incidence rate ratio of 5.0. The risk of SCRC was significantly increased in all subgroups of FCC and hereditary CRC, whereas the risk of MCRC was specifically linked to Lynch syndrome. These observations suggest that individuals with FCC or hereditary CRC should be carefully screened for second primary CRC at the time of diagnosis, whereas intensified surveillance for second primary CRC is motivated in Lynch syndrome with lower-intensity programs in families with yet unidentified genetic causes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lichtenstein P, Holm NV, Verkasalo PK et al (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85. https://doi.org/10.1056/NEJM200007133430201

    Article  CAS  PubMed  Google Scholar 

  2. Valle L (2017) Recent discoveries in the genetics of familial colorectal cancer and polyposis. Clin Gastroenterol Hepatol 15:809–819. https://doi.org/10.1016/j.cgh.2016.09.148

    Article  CAS  PubMed  Google Scholar 

  3. Kanth P, Grimmett J, Champine M et al (2017) Hereditary colorectal polyposis and cancer syndromes: a primer on diagnosis and management. Am J Gastroenterol 112:1509–1525. https://doi.org/10.1038/ajg.2017.212

    Article  PubMed  Google Scholar 

  4. Win AK, Jenkins MA, Dowty JG et al (2017) Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol Biomark Prev 26:404–412. https://doi.org/10.1158/1055-9965.EPI-16-0693

    Article  CAS  Google Scholar 

  5. Pajares JA, Perea J (2015) Multiple primary colorectal cancer: individual or familial predisposition? World J Gastrointest Oncol 7:434–444. https://doi.org/10.4251/wjgo.v7.i12.434

    Article  PubMed  PubMed Central  Google Scholar 

  6. Samadder NJ, Curtin K, Wong J et al (2014) Epidemiology and familial risk of synchronous and metachronous colorectal cancer: a population-based study in Utah. Clin Gastroenterol Hepatol 12:2078–2084.e2. https://doi.org/10.1016/j.cgh.2014.04.017

    Article  PubMed  Google Scholar 

  7. Lautrup CK, Mikkelsen EM, Lash TL et al (2015) Familial colorectal cancer risk may be lower than previously thought: a Danish cohort study. Cancer Epidemiol 39:714–719. https://doi.org/10.1016/j.canep.2015.07.004

    Article  PubMed  Google Scholar 

  8. Mesher D, Dove-Edwin I, Sasieni P et al (2014) A pooled analysis of the outcome of prospective colonoscopic surveillance for familial colorectal cancer. Int J Cancer 134:939–947. https://doi.org/10.1002/ijc.28397

    Article  CAS  PubMed  Google Scholar 

  9. Lam AK-Y, Carmichael R, Gertraud Buettner P et al (2011) Clinicopathological significance of synchronous carcinoma in colorectal cancer. Am J Surg 202:39–44. https://doi.org/10.1016/j.amjsurg.2010.05.012

    Article  PubMed  Google Scholar 

  10. Jayasekara H, Reece JC, Buchanan DD et al (2016) Risk factors for metachronous colorectal cancer following a primary colorectal cancer: a prospective cohort study. Int J Cancer 139:1081–1090. https://doi.org/10.1002/ijc.30153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Latournerie M, Jooste V, Cottet V et al (2008) Epidemiology and prognosis of synchronous colorectal cancers. Br J Surg 95:1528–1533. https://doi.org/10.1002/bjs.6382

    Article  CAS  PubMed  Google Scholar 

  12. Hu H, Chang DT, Nikiforova MN et al (2013) Clinicopathologic features of synchronous colorectal carcinoma: a distinct subset arising from multiple sessile serrated adenomas and associated with high levels of microsatellite instability and favorable prognosis. Am J Surg Pathol 37:1660–1670. https://doi.org/10.1097/PAS.0b013e31829623b8

    Article  PubMed  Google Scholar 

  13. Bos ACRK, Matthijsen RA, Erning FN van et al (2018) Treatment and outcome of synchronous colorectal carcinomas: a nationwide study. Ann Surg Oncol 25:414–421. https://doi.org/10.1245/s10434-017-6255-y

    Article  CAS  PubMed  Google Scholar 

  14. Greenstein AJ, Slater G, Heimann TM et al (1986) A comparison of multiple synchronous colorectal cancer in ulcerative colitis, familial polyposis coli, and de novo cancer. Ann Surg 203:123–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fante R, Roncucci L, Di Gregorio C et al (1996) Frequency and clinical features of multiple tumors of the large bowel in the general population and in patients with hereditary colorectal carcinoma. Cancer 77:2013–2021. https://doi.org/10.1002/(SICI)1097-0142(19960515)77:10%3C2013::AID-CNCR8%3E3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  16. Mulder SA, Kranse R, Damhuis RA et al (2012) The incidence and risk factors of metachronous colorectal cancer: an indication for follow-up. Dis Colon Rectum 55:522–531. https://doi.org/10.1097/DCR.0b013e318249db00

    Article  PubMed  Google Scholar 

  17. Win AK, Parry S, Parry B et al (2013) Risk of metachronous colon cancer following surgery for rectal cancer in mismatch repair gene mutation carriers. Ann Surg Oncol 20:1829–1836. https://doi.org/10.1245/s10434-012-2858-5

    Article  PubMed  PubMed Central  Google Scholar 

  18. Anele CC, Adegbola SO, Askari A et al (2017) Risk of metachronous colorectal cancer following colectomy in Lynch syndrome: a systematic review and meta-analysis. Colorectal Dis 19:528–536. https://doi.org/10.1111/codi.13679

    Article  CAS  PubMed  Google Scholar 

  19. Møller P, Seppälä T, Bernstein I et al (2017) Incidence of and survival after subsequent cancers in carriers of pathogenic MMR variants with previous cancer: a report from the prospective Lynch syndrome database. Gut 66:1657–1664. https://doi.org/10.1136/gutjnl-2016-311403

    Article  CAS  PubMed  Google Scholar 

  20. Renkonen-sinisalo L, Seppälä TT, Järvinen HJ, Mecklin J (2017) Subtotal colectomy for colon cancer reduces the need for subsequent surgery in Lynch syndrome. Dis Colon Rectum 60:792–799. https://doi.org/10.1097/DCR.0000000000000802

    Article  PubMed  Google Scholar 

  21. Malik SS, Lythgoe MP, McPhail M, Monahan KJ (2017) Metachronous colorectal cancer following segmental or extended colectomy in Lynch syndrome: a systematic review and meta-analysis. Fam Cancer. https://doi.org/10.1007/s10689-017-0062-2

    Article  PubMed Central  Google Scholar 

  22. Vasen HFA, Watson P, Mecklin J, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative Group on HNPCC. Gastroenterology 116:1453–1456. https://doi.org/10.1016/S0016-5085(99)70510-X

    Article  CAS  PubMed  Google Scholar 

  23. Lindberg LJ, Ladelund S, Frederiksen BL et al (2017) Outcome of 24 years national surveillance in different hereditary colorectal cancer subgroups leading to more individualised surveillance. J Med Genet 54:297–304. https://doi.org/10.1136/jmedgenet-2016-104284

    Article  PubMed  Google Scholar 

  24. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  25. Wilschut JA, Steyerberg EW, van Leerdam ME et al (2011) How much colonoscopy screening should be recommended to individuals with various degrees of family history of colorectal cancer? Cancer 117:4166–4174. https://doi.org/10.1002/cncr.26009

    Article  PubMed  Google Scholar 

  26. Shiovitz S, Copeland WK, Passarelli MN et al (2014) Characterisation of familial colorectal cancer type X, Lynch syndrome, and non-familial colorectal cancer. Br J Cancer 111:598–602. https://doi.org/10.1038/bjc.2014.309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Silva FC da, Oliveira Ferreira JR, de, Torrezan GT et al (2015) Clinical and molecular characterization of Brazilian patients suspected to have Lynch syndrome. PLoS ONE 10:e0139753. https://doi.org/10.1371/journal.pone.0139753

    Article  CAS  Google Scholar 

  28. Parry S, Win AK, Parry B et al (2011) Metachronous colorectal cancer risk for mismatch repair gene mutation carriers—the advantage of more extensive colon surgery. Gut. https://doi.org/10.1136/gut.2010.228056

    Article  PubMed  Google Scholar 

  29. Box JC, Rodriguez-Bigas MA, Weber TK, Petrelli NJ (1999) Clinical implications of multiple colorectal carcinomas in hereditary nonpolyposis colorectal carcinoma. Dis Colon Rectum 42:717–721

    Article  CAS  PubMed  Google Scholar 

  30. Kalady MF, Lipman J, McGannon E, Church JM (2012) Risk of colonic neoplasia after proctectomy for rectal cancer in hereditary nonpolyposis colorectal cancer. Ann Surg 255:1121–1125. https://doi.org/10.1097/SLA.0b013e3182565c0b

    Article  PubMed  Google Scholar 

  31. Stupart DA, Goldberg PA, Baigrie RJ et al (2011) Surgery for colonic cancer in HNPCC: total vs segmental colectomy. Colorectal Dis 13:1395–1399. https://doi.org/10.1111/j.1463-1318.2010.02467.x

    Article  CAS  PubMed  Google Scholar 

  32. Vasen HFA, Abdirahman M, Brohet R et al (2010) One to 2-year surveillance intervals reduce risk of colorectal cancer in families with Lynch syndrome. Gastroenterology 138:2300–2306. https://doi.org/10.1053/j.gastro.2010.02.053

    Article  PubMed  Google Scholar 

  33. Mulder SA, Kranse R, Damhuis RA et al (2011) Prevalence and prognosis of synchronous colorectal cancer: a Dutch population-based study. Cancer Epidemiol 35:442–447. https://doi.org/10.1016/j.canep.2010.12.007

    Article  PubMed  Google Scholar 

  34. Zauber P, Huang J, Sabbath-Solitare M, Marotta S (2013) Similarities of molecular genetic changes in synchronous and metachronous colorectal cancers are limited and related to the cancers’ proximities to each other. J Mol Diagn 15:652–660. https://doi.org/10.1016/j.jmoldx.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  35. Arriba M, Sánchez R, Rueda D et al (2017) Toward a molecular classification of synchronous colorectal cancer: clinical and molecular characterization. Clin Colorectal Cancer 16:31–37. https://doi.org/10.1016/j.clcc.2016.07.014

    Article  PubMed  Google Scholar 

  36. Dykes SL, Qui H, Rothenberger DA, García-Aguilar J (2003) Evidence of a preferred molecular pathway in patients with synchronous colorectal cancer. Cancer 98:48–54. https://doi.org/10.1002/cncr.11445

    Article  CAS  PubMed  Google Scholar 

  37. Lindor NM, Rabe K, Petersen GM et al (2005) Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency. JAMA 293:1979–1985. https://doi.org/10.1001/jama.293.16.1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support was granted from the Danish Cancer Society (Grant No. R90-A6150) and from the Swedish Cancer Society (Grant No. 2014/442). We would also like to thank all clinicians who have contributed with data to the Danish HNPCC Register.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars J. Lindberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 317 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindberg, L.J., Wegen-Haitsma, W., Ladelund, S. et al. Risk of multiple colorectal cancer development depends on age and subgroup in individuals with hereditary predisposition. Familial Cancer 18, 183–191 (2019). https://doi.org/10.1007/s10689-018-0109-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-018-0109-z

Keywords

Navigation