Skip to main content
Log in

Modified capture–recapture estimates of the number of families with Lynch syndrome in Central Ohio

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Past methods for estimating the population frequency of familial cancer syndromes have used cases and controls ignoring the familial nature of genetic disease. In this study we modified the capture–recapture method from ecology to estimate the number of families in central Ohio with Lynch syndrome (LS). We screened 1566 colorectal cancer cases and 545 endometrial cancer cases in central Ohio from 1999 to 2005 and identified 58 with LS. We screened an additional 3346 colorectal and 342 endometrial cancer cases from 2013 to 2016 and identified 149 with LS. We found 12 LS mutations shared between families observed in the first and second studies. We identified three individuals between studies who were closely related and eight who were more distantly related. We used identified family relationships and genetic test results to estimate family size and structure. Applying a modified capture–recapture method we estimate 1693 3-generation families in the area who have 288 unique LS causing mutations. Comprehensive colorectal and endometrial cancer screening will take about 20 years to identify 50% of families with LS. This is the first time that the capture–recapture method has been applied to estimate the burden of families with a specific heritable disease. Family structure reveals the potential extent of prevention and the time necessary to identify a proportion of families with LS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Carayol J, Khlat M, Maccario J, Bonaïti-Pellié C (2002) Hereditary non-polyposis colorectal cancer: current risks of colorectal cancer largely overestimated. J Med Genet 39:335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pearlman R, Frankel WL, Swanson B et al (2017) Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol 3:464–471. https://doi.org/10.1001/jamaoncol.2016.5194

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yurgelun MB, Allen B, Kaldate RR et al (2015) Identification of a variety of mutations in cancer predisposition genes in patients with suspected Lynch syndrome. Gastroenterology 149:604–613.e20. https://doi.org/10.1053/j.gastro.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  4. Haraldsdottir S, Rafnar T, Frankel WL et al (2017) Comprehensive population-wide analysis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2. Nat Commun 8:14755. https://doi.org/10.1038/ncomms14755

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen S, Wang W, Lee S et al (2006) Prediction of germline mutations and cancer risk in the Lynch syndrome. JAMA 296:1479–1487. https://doi.org/10.1001/jama.296.12.1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Win AK, Jenkins MA, Dowty JG et al (2017) Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol Biomark 26:404. https://doi.org/10.1158/1055-9965.EPI-16-0693

    Article  CAS  Google Scholar 

  7. Hampel H, de la Chapelle A (2011) The search for unaffected individuals with Lynch syndrome: do the ends justify the means? Cancer Prev Res (Philadelphia) 4:1–5. https://doi.org/10.1158/1940-6207.CAPR-10-0345

    Article  Google Scholar 

  8. Terdiman JP, Levin TR, Allen BA et al (2002) Hereditary nonpolyposis colorectal cancer in young colorectal cancer patients: high-risk clinic versus population-based registry. Gastroenterology 122:940–947

    Article  CAS  PubMed  Google Scholar 

  9. Kohlmann W, Gruber SB (1993) Lynch Syndrome. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews(®). University of Washington, Seattle, Seattle

    Google Scholar 

  10. Møller P, Seppälä T, Bernstein I et al (2017) Cancer incidence and survival in Lynch syndrome patients receiving colonoscopic and gynaecological surveillance: first report from the prospective Lynch syndrome database. Gut 66:464–472. https://doi.org/10.1136/gutjnl-2015-309675

    Article  PubMed  Google Scholar 

  11. Krawczak M, Cooper DN, Schmidtke J (2001) Estimating the efficacy and efficiency of cascade genetic screening. Am J Hum Genet 69:361–370. https://doi.org/10.1086/321973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ladabaum U, Wang G, Terdiman J et al (2011) Strategies to identify the Lynch syndrome among patients with colorectal cancer: a cost-effectiveness analysis. Ann Intern Med 155:69–79. https://doi.org/10.7326/0003-4819-155-2-201107190-00002

    Article  PubMed  PubMed Central  Google Scholar 

  13. Snowsill T, Huxley N, Hoyle M et al (2014) A systematic review and economic evaluation of diagnostic strategies for Lynch syndrome. Health Technol Assess Winch Engl 18:1–406. https://doi.org/10.3310/hta18580

    Article  Google Scholar 

  14. Hampel H (2016) Genetic counseling and cascade genetic testing in Lynch syndrome. Fam Cancer 15:423–427. https://doi.org/10.1007/s10689-016-9893-5

    Article  PubMed  Google Scholar 

  15. Hampel H, Frankel WL, Martin E et al (2005) Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352:1851–1860. https://doi.org/10.1056/NEJMoa043146

    Article  CAS  PubMed  Google Scholar 

  16. Hampel H, Frankel W, Panescu J et al (2006) Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res 66:7810–7817. https://doi.org/10.1158/0008-5472.CAN-06-1114

    Article  CAS  PubMed  Google Scholar 

  17. Hampel H, Frankel WL, Martin E et al (2008) Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol 26:5783–5788. https://doi.org/10.1200/JCO.2008.17.5950

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shia J, Tang LH, Vakiani E et al (2009) Immunohistochemistry as first-line screening for detecting colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome: a 2-antibody panel may be as predictive as a 4-antibody panel. Am J Surg Pathol 33:1639–1645. https://doi.org/10.1097/PAS.0b013e3181b15aa2

    Article  PubMed  Google Scholar 

  19. Petersen GJ C (1896) The yearly immigration of young plaice into the Limfjord From the German Sea. Rep Dan Biol Stn 6:1–48

    Google Scholar 

  20. Lincoln F (1930) Calculating waterfowl abundance on the basis of banding returns. US Dept Agric Circ 118:1–4

    Google Scholar 

  21. Tilling K (2001) Capture–recapture methods—useful or misleading? Int J Epidemiol 30:12–14. https://doi.org/10.1093/ije/30.1.12

    Article  CAS  PubMed  Google Scholar 

  22. Chapman DG (1951) Some properties of the hypergeometric distribution with applications to zoological sample censuses. University of California Press, Berkeley

    Google Scholar 

  23. Quehenberger F, Vasen HFA, van Houwelingen HC (2005) Risk of colorectal and endometrial cancer for carriers of mutations of the hMLH1 and hMSH2 gene: correction for ascertainment. J Med Genet 42:491–496. https://doi.org/10.1136/jmg.2004.024299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bonadona V, Bonaïti B, Olschwang S et al (2011) Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 305:2304–2310. https://doi.org/10.1001/jama.2011.743

    Article  CAS  PubMed  Google Scholar 

  25. Senter L, Clendenning M, Sotamaa K et al (2008) The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology 135:419–428. https://doi.org/10.1053/j.gastro.2008.04.026

    Article  CAS  PubMed  Google Scholar 

  26. Machiela MJ, Chanock SJ (2015) LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics (Oxford) 31:3555–3557. https://doi.org/10.1093/bioinformatics/btv402

    Article  CAS  Google Scholar 

  27. Clendenning M, Baze ME, Sun S et al (2008) Origins and prevalence of the American Founder Mutation of MSH2. Cancer Res 68:2145–2153. https://doi.org/10.1158/0008-5472.CAN-07-6599

    Article  CAS  PubMed  Google Scholar 

  28. Desai DC, Lockman JC, Chadwick RB et al (2000) Recurrent germline mutation in MSH2 arises frequently de novo. J Med Genet 37:646–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cancer of the Colon and Rectum - Cancer Stat Facts. https://seer.cancer.gov/statfacts/html/colorect.html. https://seer.cancer.gov/statfacts/html/colorect.html. Accessed 28 Sept 2017

  30. Rañola JMO, Liu Q, Rosenthal EA, Shirts BH (2017) A comparison of cosegregation analysis methods for the clinical setting. Fam Cancer. https://doi.org/10.1007/s10689-017-0017-7

    Article  PubMed  PubMed Central  Google Scholar 

  31. U.S. Census Ohio Population. https://www.census.gov/quickfacts/fact/table/OH/PST045216. https://www.census.gov/quickfacts/fact/table/OH/PST045216. Accessed 28 Sept 2017

  32. Plazzer JP, Sijmons RH, Woods MO et al (2013) The InSiGHT database: utilizing 100 years of insights into Lynch syndrome. Fam Cancer 12:175–180. https://doi.org/10.1007/s10689-013-9616-0

    Article  CAS  PubMed  Google Scholar 

  33. Landrum MJ, Lee JM, Riley GR et al (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42:D980–D985. https://doi.org/10.1093/nar/gkt1113

    Article  CAS  PubMed  Google Scholar 

  34. McCarty DJ, Tull ES, Moy CS et al (1993) Ascertainment corrected rates: applications of capture–recapture methods. Int J Epidemiol 22:559–565

    Article  CAS  PubMed  Google Scholar 

  35. McCrea RS, Morgan BJT (2015) Analysis of capture–recapture data, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  36. Perez-Carbonell L, Ruiz-Ponte C, Guarinos C et al (2012) Comparison between universal molecular screening for Lynch syndrome and revised Bethesda guidelines in a large population-based cohort of patients with colorectal cancer. Gut 61:865–872. https://doi.org/10.1136/gutjnl-2011-300041

    Article  CAS  PubMed  Google Scholar 

  37. Marquez E, Geng Z, Pass S et al (2013) Implementation of routine screening for Lynch syndrome in university and safety-net health system settings: successes and challenges. Genet Med 18:45

    Google Scholar 

  38. Hunter JE, Zepp JM, Gilmore MJ et al (2015) Universal tumor screening for Lynch syndrome: assessment of the perspectives of patients with colorectal cancer regarding benefits and barriers. Cancer 121:3281–3289. https://doi.org/10.1002/cncr.29470

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Ohio Colorectal Cancer Prevention Initiative is supported by Pelotonia, http://pelotonia.org/. Brian Shirts and John Ranola are supported by Damon Runyon Cancer Research Foundation (DRR-33-15) and by development funds from the Fred Hutch/University of Washington Cancer Consortium (NCI 5P30 CA015704-39).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian H. Shirts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 95 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranola, J.M.O., Pearlman, R., Hampel, H. et al. Modified capture–recapture estimates of the number of families with Lynch syndrome in Central Ohio. Familial Cancer 18, 67–73 (2019). https://doi.org/10.1007/s10689-018-0096-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-018-0096-0

Keywords

Navigation