Advertisement

Hemangioblastoma in Hereditary Leiomyomatosis and Renal Cell Cancer Syndrome: a phenotypic overlap between VHL and HLRCC Syndromes

  • Eryn Dow
  • Ingrid M. Winship
Original Article

Abstract

Hemangioblastomas are rare vascularized central nervous system tumors, which can occur sporadically or be associated with von Hippel Lindau Syndrome. The pathogenesis of hemangioblastomas in von Hippel Lindau Syndrome is proposed to involve a pseudohypoxic intracellular state induced by dysregulation of hypoxia inducible factor alpha due to the absence of von Hippel Lindau protein complex mediated destruction. Dysregulation of fumarate hydratase, a tricarboxylic acid cycle enzyme, occurs in Hereditary Leiomyomatosis and Renal Cell Cancer Syndrome due to germline fumarate hydratase gene mutations, and also results in oncogenesis via hypoxia inducible factor alpha dysregulation. We present a case study of hemangioblastoma occurrence in a Hereditary Leiomyomatosis and Renal Cell Cancer Syndrome patient and propose it as possible evidence of a phenotypic overlap between von Hippel Lindau and Hereditary Leiomyomatosis and Renal Cell Cancer Syndromes due to their overlapping role in the biochemical regulation of hypoxia inducible factor alpha.

Keywords

Hereditary Leiomyomatosis and Renal Cell Cancer Syndrome (HLRCC) Von Hippel Lindau Syndrome (VHL) Hypoxia Inducible Factor alpha (HIFα) Hemangioblastoma 

References

  1. 1.
    Pierscianek D, Wolf S, Keyvani K, El Hindy N, Stein KP, Sandalcioglu IE, Sure U, Mueller O, Zhu Y (2017) Study of angiogenic signaling pathways in hemangioblastoma. Neuropathology 37(1):3–11.  https://doi.org/10.1111/neup.12316 CrossRefPubMedGoogle Scholar
  2. 2.
    Chittiboina P, Lonser RR (2015) Von Hippel-Lindau disease. Handb Clin Neurol 132:139–156.  https://doi.org/10.1016/b978-0-444-62702-5.00010-x CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Launonen V, Vierimaa O, Kiuru M, Isola J, Roth S, Pukkala E, Sistonen P, Herva R, Aaltonen LA (2001) Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci USA 98(6):3387–3392.  https://doi.org/10.1073/pnas.051633798 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Alam NA, Barclay E, Rowan AJ, Tyrer JP, Calonje E, Manek S, Kelsell D, Leigh I, Olpin S, Tomlinson IP (2005) Clinical features of multiple cutaneous and uterine leiomyomatosis: an underdiagnosed tumor syndrome. Arch Dermatol 141(2):199–206.  https://doi.org/10.1001/archderm.141.2.199 CrossRefPubMedGoogle Scholar
  5. 5.
    Pithukpakorn M, Toro JR (1993) Hereditary leiomyomatosis and renal cell cancer. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews(R). University of Washington, SeattleGoogle Scholar
  6. 6.
    Kantaputra PN, Kaewgahya M, Hatsadaloi A, Vogel P, Kawasaki K, Ohazama A, Ketudat Cairns JR (2015) GREMLIN 2 mutations and dental anomalies. J Dent Res 94(12):1646–1652.  https://doi.org/10.1177/0022034515608168 CrossRefPubMedGoogle Scholar
  7. 7.
    Law R, Dixon-Salazar T, Jerber J, Cai N, Abbasi AA, Zaki MS, Mittal K, Gabriel SB, Rafiq MA, Khan V, Nguyen M, Ali G, Copeland B, Scott E, Vasli N, Mikhailov A, Khan MN, Andrade DM, Ayaz M, Ansar M, Ayub M, Vincent JB, Gleeson JG (2014) Biallelic truncating mutations in FMN2, encoding the actin-regulatory protein Formin 2, cause nonsyndromic autosomal-recessive intellectual disability. Am J Hum Genet 95(6):721–728.  https://doi.org/10.1016/j.ajhg.2014.10.016 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Duong BT, Savarirayan R, Winship I (2016) Incidental diagnosis of HLRCC following investigation for Asperger Syndrome: actionable and actioned. Fam Cancer 15(1):25–29.  https://doi.org/10.1007/s10689-015-9829-5 CrossRefPubMedGoogle Scholar
  9. 9.
    Linehan WM, Srinivasan R, Schmidt LS (2010) The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol 7(5):277–285.  https://doi.org/10.1038/nrurol.2010.47 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Chung YL, Merino M, Trepel J, Zbar B, Toro J, Ratcliffe PJ, Linehan WM, Neckers L (2005) HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8(2):143–153.  https://doi.org/10.1016/j.ccr.2005.06.017 CrossRefPubMedGoogle Scholar
  11. 11.
    Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, Hargreaves IP, Heales SJ, Chung YL, Griffiths JR, Dalgleish A, McGrath JA, Gleeson MJ, Hodgson SV, Poulsom R, Rustin P, Tomlinson IP (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14(15):2231–2239.  https://doi.org/10.1093/hmg/ddi227 CrossRefPubMedGoogle Scholar
  12. 12.
    Sudarshan S, Shanmugasundaram K, Naylor SL, Lin S, Livi CB, O’Neill CF, Parekh DJ, Yeh IT, Sun LZ, Block K (2011) Reduced expression of fumarate hydratase in clear cell renal cancer mediates HIF-2alpha accumulation and promotes migration and invasion. PLoS ONE 6(6):e21037.  https://doi.org/10.1371/journal.pone.0021037 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Williamson SR, Grignon DJ, Cheng L, Favazza L, Gondim DD, Carskadon S, Gupta NS, Chitale DA, Kalyana-Sundaram S, Palanisamy N (2017) Renal cell carcinoma with chromosome 6p amplification including the TFEB gene: a novel mechanism of tumor pathogenesis? Am J Surg Pathol 41(3):287–298.  https://doi.org/10.1097/pas.0000000000000776 CrossRefPubMedGoogle Scholar
  14. 14.
    Iliopoulos O, Kibel A, Gray S, Kaelin WG Jr (1995) Tumour suppression by the human von Hippel-Lindau gene product. Nat Med 1(8):822–826CrossRefPubMedGoogle Scholar
  15. 15.
    Lehtonen HJ, Blanco I, Piulats JM, Herva R, Launonen V, Aaltonen LA (2007) Conventional renal cancer in a patient with fumarate hydratase mutation. Hum Pathol 38(5):793–796.  https://doi.org/10.1016/j.humpath.2006.10.011 CrossRefPubMedGoogle Scholar
  16. 16.
    Muller M, Ferlicot S, Guillaud-Bataille M, Le Teuff G, Genestie C, Deveaux S, Slama A, Poulalhon N, Escudier B, Albiges L, Soufir N, Avril MF, Gardie B, Saldana C, Allory Y, Gimenez-Roqueplo AP, Bressac-de Paillerets B, Richard S, Benusiglio PR (2017) Reassessing the clinical spectrum associated with hereditary leiomyomatosis and renal cell carcinoma syndrome in French FH mutation carriers. Clin Genet.  https://doi.org/10.1111/cge.13014 Google Scholar
  17. 17.
    Li M, Song J, Pytel P (2014) Expression of HIF-1 regulated proteins vascular endothelial growth factor, carbonic anhydrase IX and hypoxia inducible gene 2 in hemangioblastomas. Folia Neuropathol 52(3):234–242CrossRefPubMedGoogle Scholar
  18. 18.
    Takayanagi S, Mukasa A, Tanaka S, Nomura M, Omata M, Yanagisawa S, Yamamoto S, Ichimura K, Nakatomi H, Ueki K, Aburatani H, Saito N (2017) Differences in genetic and epigenetic alterations between von Hippel-Lindau disease-related and sporadic hemangioblastomas of the central nervous system. Neuro-oncology.  https://doi.org/10.1093/neuonc/nox034 PubMedGoogle Scholar
  19. 19.
    Shankar GM, Taylor-Weiner A, Lelic N, Jones RT, Kim JC, Francis JM, Abedalthagafi M, Borges LF, Coumans J, Curry WT, Nahed BV, Shin JH, Paek SH, Park S, Stewart C, Lawrence MS, Cibulskis K, Thorner AR, Van Hummelen P, Stemmer-Rachamimov AO, Batchelor TT, Carter SL, Hoang MP, Santagata S, Louis DN, Barker FG II, Meyerson M, Getz G, Brastianos PK, Cahill DP (2014) Sporadic hemangioblastomas are characterized by cryptic VHL inactivation. Acta Neuropathol Commun.  https://doi.org/10.1186/s40478-014-0167-x PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Genetic Medicine and Family Cancer ClinicRoyal Melbourne HospitalParkvilleAustralia
  2. 2.Department of MedicineThe University of MelbourneParkvilleAustralia

Personalised recommendations