Familial Cancer

, Volume 17, Issue 2, pp 215–224 | Cite as

A germline missense mutation in exon 3 of the MSH2 gene in a Lynch syndrome family: correlation with phenotype and localization assay

  • Francesca Bianchi
  • Elena Maccaroni
  • Laura Belvederesi
  • Cristiana Brugiati
  • Riccardo Giampieri
  • Federica Bini
  • Raffaella Bracci
  • Silvia Pagliaretta
  • Michela Del Prete
  • Francesco Piva
  • Alessandra Mandolesi
  • Marina Scarpelli
  • Rossana Berardi
Original Article


Lynch syndrome is caused by germline mutations in any of the MisMatch Repair (MMR) genes. About 37% of MSH2 variants are missense variants causing single amino-acid substitutions. Whether missense variants affect the normal function of MMR proteins is crucial both to provide affected families a more accurate risk assessment and to offer predictive testing to family members. Here we report one family, fulfilling both Amsterdam I and II criteria and Bethesda guidelines, referred to our center for genetic counselling. The proband and some of her relatives have been investigated for microsatellite instability (MSI), immunohistochemical MMR protein staining, direct sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA). Also Subcellular Localization Assay and Splice site predictions analyses were used. A germline missense variant of uncertain significance (exon 3, p.Val161Asp) was found in MSH2 gene in proband and in some relatives. The variant was associated with lack of expression of MSH2 protein (DMMR) and MSI-High status in tumour tissues. The localization assay of the MSH2 protein showed an abnormal subcellular localization pattern of the corresponding protein. Finally, splice-site prediction analysis ruled out a potential role of new splice sites as the cause behind the lack of expression of MSH2 protein and we suppose a potential correlation with other forms of post-transcriptional regulation (circular RNAs). The variant here reported shows a high correlation with phenotype and is located in an evolutionary conserved domain. The localization assay also suggest a potential pathogenic role, thus supporting further research on this matter.


Lynch syndrome Germline mutation Missense variant Genetic testing Pathogenic mutation 



The authors have no funding sources to declare.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    de la Chapelle A (2005) The incidence of Lynch syndrome. Fam Cancer 4(3):233–237. doi: 10.1007/s10689-004-5811-3 CrossRefPubMedGoogle Scholar
  2. 2.
    Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348:919–932. doi: 10.1056/NEJMra012242 CrossRefPubMedGoogle Scholar
  3. 3.
    Haraldsdottir S, Hampel H, Wei L, Wu C, Frankel W, Bekaii-Saab T, de la Chapelle A, Goldberg RM (2014) Prostate cancer incidence in males with Lynch syndrome. Genet Med 16:553–5577. doi: 10.1038/gim.2013.193 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Peltomäki P (2005) Lynch syndrome genes. Fam Cancer 4:227–232. doi: 10.1007/s10689-004-7993-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Vasen HF, Blanco I, Aktan-Collan K, Gopie JP, Alonso A, Aretz S, Bernstein I, Bertario L, Burn J, Capella G, Colas C, Engel C, Frayling IM, Genuardi M, Heinimann K, Hes FJ, Hodgson SV, Karagiannis JA, Lalloo F, Lindblom A, Mecklin JP, Møller P, Myrhoj T, Nagengast FM, Parc Y, Ponz de Leon M, Renkonen-Sinisalo L, Sampson JR, Stormorken A, Sijmons RH, Tejpar S, Thomas HJ, Rahner N, Wijnen JT, Järvinen HJ, Möslein G, Mallorca Group (2013) Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut 62:812–823. doi: 10.1136/gutjnl-2012-304356 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S (1998) A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development on international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257PubMedGoogle Scholar
  7. 7.
    Belvederesi L, Bianchi F, Galizia E, Loretelli C, Bracci R, Catalani R, Amati M, Cellerino R (2008) MSH2 missense mutations and HNPCC syndrome: pathogenicity assessment in a human expression system. Hum Mutat 29(11):E296–E309. doi: 10.1002/humu.20875 CrossRefPubMedGoogle Scholar
  8. 8.
    Maccaroni E, Bracci R, Giampieri R, Bianchi F, Belvederesi L, Brugiati C, Pagliaretta S, Del Prete M, Scartozzi M, Cascinu S (2015) Prognostic impact of mismatch repair genes germline defects in colorectal cancer patients: are all mutations equal? Oncotarget 6(36):33848–38737. doi: 10.18632/oncotarget.5395 CrossRefGoogle Scholar
  9. 9.
    Vasen HF, Mecklin JP, Khan PM, Lynch HT (1991) The International Collaborative Group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis Colon Rectum 34(5):424–425CrossRefPubMedGoogle Scholar
  10. 10.
    Vasen HF, Watson P, Mecklin JP, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116(6):1453–1456CrossRefPubMedGoogle Scholar
  11. 11.
    Syngal S, Fox EA, Eng C, Kolodner RD, Garber JE (2000) Sensitivity and specificity of clinical criteria for hereditary non-polyposis colorectal cancer associated mutations in MSH2 and MLH1. J Med Genet 37(9):641–645CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Rodriguez-Bigas MA, Boland CR, Hamilton SR, Henson DE, Jass JR, Khan PM, Lynch H, Perucho M, Smyrk T, Sobin L, Srivastava S (1997) A National Cancer Institute Workshop on hereditary nonpolyposis colorectal Cancer syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 89(23):1758–1762CrossRefPubMedGoogle Scholar
  13. 13.
    Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Rüschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, Hamilton SR, Hiatt RA, Jass J, Lindblom A, Lynch HT, Peltomaki P, Ramsey SD, Rodriguez-Bigas MA, Vasen HF, Hawk ET, Barrett JC, Freedman AN, Srivastava S (2004) Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96(4):261–268CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Strate LL, Syngal S (2005) Hereditary colorectal cancer syndromes. Cancer Causes Control 16:201–213. doi: 10.1007/s10552-004-3488-4 CrossRefPubMedGoogle Scholar
  15. 15.
    Bianchi F, Galizia E, Porfiri E, Belvederesi L, Catalani R, Loretelli C, Bracci R, Bearzi I, Turchi C, Viel A, Cellerino R (2007) A missense germline mutation in exon 7 of the MSH2 gene in a HNPCC family from center-Italy. Fam Cancer 6(1):97–102. doi: 10.1007/s10689-006-9110-z CrossRefPubMedGoogle Scholar
  16. 16.
    Plon SE, Eccles DM, Easton D, Foulkes WD, Genuardi M, Greenblatt MS, Hogervorst FB, Hoogerbrugge N, Spurdle AB, Tavtigian SV; IARC Unclassified Genetic Variants Working Group (2008) Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 29:1282–1291. doi: 10.1002/humu.20880.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Peltomäki P, Vasen H (2004) Mutations associated with HNPCC predisposition—Update of ICG-HNPCC/INSiGHT mutation database. Dis Markers 20(4–5):269–276CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Plazzer JP, Sijmons RH, Woods MO, Peltomäki P, Thompson B, Den Dunnen JT, Macrae F (2013) The InSiGHT database: utilizing 100 years of insights into Lynch syndrome. Fam Cancer 12(2):175–180. doi: 10.1007/s10689-013-9616-0 CrossRefPubMedGoogle Scholar
  19. 19.
    Cravo M, Afonso AJ, Lage P, Albuquerque C, Maia L, Lacerda C, Fidalgo P, Chaves P, Cruz C, Nobre-Leitão C (2002) Pathogenicity of missense and splice site mutations in hMSH2 and hMLH1 mismatch repair genes: implications for genetic testing. Gut 50:405–412CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Genuardi M, Carrara S, Anti M, Ponz de Leon M, Viel A (1999) Assessment of pathogenicity criteria for constitutional missense mutations of the hereditary nonpolyposis colorectal cancer genes MLH1 and MSH2. Eur J Hum Genet 7:778–782. doi: 10.1038/sj.ejhg.5200363 CrossRefPubMedGoogle Scholar
  21. 21.
    Scartozzi M, Bianchi F, Rosati S, Galizia E, Antolini A, Loretelli C, Piga A, Bearzi I, Cellerino R, Porfiri E (2002) Mutations of hMLH1 and hMSH2 in patients with suspected hereditary nonpolyposis colorectal cancer: correlation with microsatellite instability and abnormalities of mismatch repair protein expression. J Clin Oncol 20:1203–1208. doi: 10.1200/JCO.2002.20.5.1203 CrossRefPubMedGoogle Scholar
  22. 22.
    Bianchi F, Galizia E, Catalani R, Belvederesi L, Ferretti C, Corradini F, Cellerino R (2009) CAT25 is a mononucleotide marker to identify HNPCC patients. J Mol Diagn 11(3):248–252. doi: 10.2353/jmoldx.2009.080155 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Marcus VA, Madlensky L, Gryfe R, Kim H, So K, Millar A, Temple LK, Hsieh E, Hiruki T, Narod S, Bapat BV, Gallinger S, Redston M (1999) Immunohistochemistry for hMLH1 and hMSH2: a practical test for DNA mismatch repair-deficient tumors. Am J Surg Pathol 23:1248–1255CrossRefPubMedGoogle Scholar
  24. 24.
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249. doi: 10.1038/nmeth0410-248 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Drost M, Lützen A, van Hees S, Ferreira D, Calléja F, Zonneveld JB, Nielsen FC, Rasmussen LJ, de Wind N (2013) Genetic screens to identify pathogenic gene variants in the common cancer predisposition Lynch syndrome. Proc Natl Acad Sci USA 110(23):9403–9408. doi: 10.1073/pnas.1220537110 CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Nyström-Lahti M, Perrera C, Räschle M, Panyushkina-Seiler E, Marra G, Curci A, Quaresima B, Costanzo F, D’Urso M, Venuta S, Jiricny J (2002) Functional analysis of MLH1 mutations linked to hereditary nonpolyposis colon cancer. Genes Chromosom Cancer 33(2):160–167CrossRefPubMedGoogle Scholar
  27. 27.
    Piva F, Giulietti M, Burini AB, Principato G (2012) SpliceAid 2: a database of human splicing factors expression data and RNA target motifs. Hum Mutat 33:81–85. doi: 10.1002/humu.21609 CrossRefPubMedGoogle Scholar
  28. 28.
    Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in Genie. J Comput Biol 4:311–323CrossRefPubMedGoogle Scholar
  29. 29.
    Piva F, Giulietti M, Nardi B, Bellantuono C, Principato G (2010) An improved in silico selection of phenotype affecting polymorphisms in SLC6A4, HTR1A and HTR2A genes. Hum Psychopharmacol 25:153–161. doi: 10.1002/hup.1100 CrossRefPubMedGoogle Scholar
  30. 30.
    Giulietti M, Milantoni SA, Armeni T, Principato G, Piva F (2015) ExportAid: database of RNA elements regulating nuclear RNA export in mammals. Bioinformatics 31:246–251. doi: 10.1093/bioinformatics/btu620 CrossRefPubMedGoogle Scholar
  31. 31.
    Knudsen NØ, Nielsen FC, Vinther L, Bertelsen R, Holten-Andersen S, Liberti SE, Hofstra R, Kooi K, Rasmussen LJ (2007) Nuclear localization of human DNA mismatch repair protein exonuclease 1 (hEXO1). Nucleic Acids Res 35:2609–2619. doi: 10.1093/nar/gkl1166 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Ollila S, Sarantaus L, Kariola R, Chan P, Hampel H, Holinski-Feder E, Macrae F, Kohonen-Corish M, Gerdes AM, Peltomäki P, Mangold E, de la Chapelle A, Greenblatt M, Nyström M (2006) Pathogenicity of MSH2 missense mutations is typically associated with impaired repair capability of the mutated protein. Gastroenterology 131(5):1408–1417. doi: 10.1053/j.gastro.2006.08.044 CrossRefPubMedGoogle Scholar
  33. 33.
    Piñol V, Castells A, Andreu M, Castellví-Bel S, Alenda C, Llor X, Xicola RM, Rodríguez-Moranta F, Payá A, Jover R, Bessa X; Gastrointestinal Oncology Group of the Spanish Gastroenterological Association (2005) Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA 293(16):1986–1994. doi: 10.1001/jama.293.16.1986 CrossRefPubMedGoogle Scholar
  34. 34.
    Petkovic S, Muller S (2015) RNA circularization strategies in vivo and in vitro. Nucleic Acids Res 43:2454–2465CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211CrossRefPubMedGoogle Scholar
  36. 36.
    Ebbesen KK, Kjems J, Hansen TB (2016) Circular RNAs: identification, biogenesis and function. Biochim Biophys Acta 1859:163–168CrossRefPubMedGoogle Scholar
  37. 37.
    Li J, Yang J, Zhou P, Le Y, Zhou C, Wang S et al (2015) Circular RNAs in cancer: novel insights into origins, properties, functions and implications. Am J Cancer Res 5:472–480PubMedCentralPubMedGoogle Scholar
  38. 38.
    Chen S, Li T, Zhao Q, Xiao B, Guo J (2017) Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta 466:167–171CrossRefPubMedGoogle Scholar
  39. 39.
    Han D, Li J, Wang H, Su X, Hou J, Gu Y, Qian C, Lin Y, Liu X, Huang M, Li N, Zhou W, Yu Y, Cao X (2017) Circular RNA MTO1 acts as the sponge of miR-9 to suppress hepatocellular carcinoma progression. Hepatology. doi: 10.1002/hep.29270 Google Scholar
  40. 40.
    Fu L, Chen Q, Yao T, Li T, Ying S, Hu Y, Guo J (2017) Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma. Oncotarget 8(27):43878–43888. doi: 10.18632/oncotarget.16709 PubMedCentralPubMedGoogle Scholar
  41. 41.
    Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z et al (2017) Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 24(2):357–370CrossRefPubMedGoogle Scholar
  42. 42.
    Armakola M, Higgins MJ, Figley MD, Barmada SJ, Scarborough EA, Diaz Z et al (2012) Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet 44:1302–1309CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Li Z, Huang C, Bao C, Chen L, Lin M, Wang X et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264CrossRefPubMedGoogle Scholar
  44. 44.
    Kumar L, Shamsuzzama, Haque R, Baghel T, Nazir A. Circular RNAs: the emerging class of non-coding RNAs and their potential role in human neurodegenerative diseases. Mol Neurobiol 1–11Google Scholar
  45. 45.
    Li P, Chen S, Chen H, Mo X, Li T, Shao Y et al (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136CrossRefPubMedGoogle Scholar
  46. 46.
    Chen J, Li Y, Zheng Q, Bao C, He J, Chen B et al (2016) Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett 388:208–219CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Francesca Bianchi
    • 1
  • Elena Maccaroni
    • 1
  • Laura Belvederesi
    • 1
  • Cristiana Brugiati
    • 1
  • Riccardo Giampieri
    • 1
  • Federica Bini
    • 1
  • Raffaella Bracci
    • 1
  • Silvia Pagliaretta
    • 1
  • Michela Del Prete
    • 1
  • Francesco Piva
    • 2
  • Alessandra Mandolesi
    • 3
  • Marina Scarpelli
    • 3
  • Rossana Berardi
    • 1
  1. 1.Clinica Oncologica e Centro Regionale di Genetica OncologicaUniversità Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali RiunitiAnconaItaly
  2. 2.Dipartimento di Scienze Cliniche Specialistiche e OdontostomatologicheUniversità Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali RiunitiAnconaItaly
  3. 3.Anatomia Patologica Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali RiunitiAnconaItaly

Personalised recommendations