Skip to main content

Advertisement

Log in

Novel BRCA1 splice-site mutation in ovarian cancer patients of Slavic origin

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Mutations in breast cancer susceptibility gene 1 (BRCA1) lead to defects in a number of cellular pathways including DNA damage repair and transcriptional regulation, resulting in the elevated genome instability and predisposing to breast and ovarian cancers. We report a novel mutation LRG_292t1:c.4356delA,p.(Ala1453Glnfs*3) in the 12th exon of BRCA1, in the splice site region near the donor site of intron 12. It is a frameshift mutation with the termination codon generated on the third amino acid position from the site of deletion. Human Splice Finder 3.0 and MutationTaster have assessed this variation as disease causing, based on the alteration of splicing, creation of premature stop codon and other potential alterations initiated by nucleotide deletion. Among the most important alterations are frameshift and splice site changes (score of the newly created donor splice site: 0.82). c.4356delA was associated with two ovarian cancer cases in two families of Slavic origin. It was detected by next generation sequencing, and confirmed with Sanger sequencing in both cases. Because of the fact that it changes the reading frame of the protein, novel mutation c.4356delA p.(Ala1453Glnfs*3) in BRCA1 gene might be of clinical significance for hereditary ovarian cancer. Further functional as well as segregation analyses within the families are necessary for appropriate clinical classification of this variant. Since it has been detected in two ovarian cancer patients of Slavic origin, it is worth investigating founder effect of this mutation in Slavic populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Walsh T, Casadei S, Lee MK et al (2011) Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci. doi:10.1073/pnas.1115052108

    Google Scholar 

  2. Stegel V, Krajc M, Žgajnar J et al (2011) The occurrence of germline BRCA1 and BRCA2sequence alterations in Slovenian population. BMC Med Genet 12:9. doi:10.1186/1471-2350-12-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Novaković S, Milatović M, Cerkovnik P et al (2012) Novel BRCA1 and BRCA2 pathogenic mutations in Slovene hereditary breast and ovarian cancer families. Int J Oncol 41:1619–1627. doi:10.3892/ijo.2012.1595

    Article  PubMed  PubMed Central  Google Scholar 

  4. Krajc M, Teugels E, Zgajnar J et al (2008) Five recurrent BRCA1/2 mutations are responsible for cancer predisposition in the majority of Slovenian breast cancer families. BMC Med Genet 9:83. doi:10.1186/1471-2350-9-83

    Article  PubMed  PubMed Central  Google Scholar 

  5. Krajc M, Zadnik V, Novaković S et al (2014) Geographical distribution of Slovenian BRCA1/2 families according to family origin: implications for genetic screening. Clin Genet 85:59–63. doi:10.1111/cge.12119

    Article  CAS  PubMed  Google Scholar 

  6. Mavaddat N, Peock S, Frost D et al (2013) Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 105:812–822. doi:10.1093/jnci/djt095

    Article  CAS  PubMed  Google Scholar 

  7. Chen S, Parmigiani G (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25:1329–1333. doi:10.1200/JCO.2006.09.1066

    Article  PubMed  PubMed Central  Google Scholar 

  8. Parkes EE, Kennedy RD (2016) Clinical application of Poly(ADP-Ribose) polymerase inhibitors in high-grade serous ovarian cancer. Oncologist 21:586–593. doi:10.1634/theoncologist.2015-0438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Muggia F, Safra T (2014) “BRCAness” and its implications for platinum action in gynecologic cancer. Anticancer Res 34:551–556

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pal T, Permuth-Wey J, Kapoor R et al (2007) Improved survival in BRCA2 carriers with ovarian cancer. Fam Cancer 6:113–119. doi:10.1007/s10689-006-9112-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. doi:10.1038/nrg775

    PubMed  Google Scholar 

  12. Pagani F, Baralle FE (2004) Opinion: genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5:389–396. doi:10.1038/nrg1327

    Article  CAS  PubMed  Google Scholar 

  13. Krawczak M, Thomas NST, Hundrieser B et al (2007) Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 28:150–158. doi:10.1002/humu.20400

    Article  CAS  PubMed  Google Scholar 

  14. https://www.nccn.org/store/login/login.aspx?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. https://www.nccn.org/store/login/login.aspx?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. Accessed 23 Mar 2017

  15. National Guidelines of Good Clinical Practice: Breast Cancer Diagnosis and Treatment (Serbian) (2013) Ed. Radan Dzodic, Ministry of Health of Republic of Serbia

  16. Dobričić J, Branković-Magić M, Filipović S, Radulović S (2010) Novel BRCA1/2 mutations in Serbian breast and breast–ovarian cancer patients with hereditary predisposition. Cancer Genet Cytogenet 202:27–32. doi:10.1016/j.cancergencyto.2010.06.001

    Article  PubMed  Google Scholar 

  17. Desmet F-O, Hamroun D, Lalande M et al (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37:e67–e67. doi:10.1093/nar/gkp215

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schwarz JM, Rödelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7:575–576. doi:10.1038/nmeth0810-575

    Article  CAS  PubMed  Google Scholar 

  19. Werness BA, Eltabbakh GH (2001) Familial ovarian cancer and early ovarian cancer: biologic, pathologic, and clinical features. Int J Gynecol Pathol 20:48–63. doi:10.1097/00004347-200101000-00005

    Article  CAS  PubMed  Google Scholar 

  20. Ory HW, Layde PM, Rubin GI (1987) The reduction in risk of ovarian cancer associated with oral-contraceptive use. N Engl J Med 316:650–655. doi:10.1056/NEJM198703123161102

    Article  Google Scholar 

  21. Prat J, Ribé A, Gallardo A (2005) Hereditary ovarian cancer. Hum Pathol 36:861–870. doi:10.1016/j.humpath.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  22. Pharoah PDP, Ponder BAJ (2002) The genetics of ovarian cancer. Best Pract Res Clin Obstet Gynaecol 16:449–468

    Article  PubMed  Google Scholar 

  23. Beggs AD, Latchford AR, Vasen HFA et al (2010) Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut 59:975–986. doi:10.1136/gut.2009.198499

    Article  CAS  PubMed  Google Scholar 

  24. Kohlmann W, Gruber SB (1993) Lynch syndrome. University of Washington, Seattle

    Google Scholar 

  25. Couch FJ, Nathanson KL, Offit K (2014) Two decades after BRCA: setting paradigms in personalized cancer care and prevention. Science 343:1466–1470. doi:10.1126/science.1251827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Clark SL, Rodriguez AM, Snyder RR et al (2012) Structure-function of the tumor suppressor Brca1. Comput Struct Biotechnol J 1:1–8. doi:10.5936/csbj.201204005

    Article  Google Scholar 

  27. Gatei M, Zhou B-B, Hobson K et al (2001) Ataxia Telangiectasia Mutated (ATM) Kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites: IN VIVO ASSESSMENT USING PHOSPHO-SPECIFIC ANTIBODIES. J Biol Chem 276:17276–17280. doi:10.1074/jbc.M011681200

    Article  CAS  PubMed  Google Scholar 

  28. Beckta JM, Dever SM, Gnawali N et al (2015) Mutation of the BRCA1 SQ-cluster results in aberrant mitosis, reduced homologous recombination, and a compensatory increase in non-homologous end joining. Oncotarget 6(29):27674–27687

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ward AJ, Cooper TA (2010) NIH public access. J Pathol 220:152–163. doi:10.1002/path.2649.The

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Burset M, Seledtsov IA, Solovyev VV (2000) Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res 28:4364–4375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee Y, Rio DC (2015) Mechanisms and regulation of alternative Pre-mRNA splicing. Annu Rev Biochem 84:291–323. doi:10.1146/annurev-biochem-060614-034316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garcia-Blanco MA, Baraniak AP, Lasda EL (2004) Alternative splicing in disease and therapy. Nat Biotechnol 22:535–546. doi:10.1038/nbt964

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mirjana Brankovic Magic or Srdjan Novakovic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivokuca, A., Dragos, V.S., Stamatovic, L. et al. Novel BRCA1 splice-site mutation in ovarian cancer patients of Slavic origin. Familial Cancer 17, 179–185 (2018). https://doi.org/10.1007/s10689-017-0022-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-017-0022-x

Keywords

Navigation