Familial Cancer

, Volume 14, Issue 3, pp 487–493 | Cite as

Zebrafish xenotransplantation as a tool for in vivo cancer study

  • Beibei Zhang
  • Chao Xuan
  • Yunxi Ji
  • Weiming Zhang
  • Daogang Wang


Zebrafish represents a powerful model for cancer research. Particularly, the xenotransplantation of human cancer cells into zebrafish has enormous potential for further evaluation of cancer progression and drug discovery. Various cancer models have been established in adults, juveniles and embryos of zebrafish. This xenotransplantation zebrafish model provides a unique opportunity to monitor cancer proliferation, tumor angiogenesis, metastasis, self-renewal of cancer stem cells, and drug response in real time in vivo. This review summarizes the use of zebrafish as a model for cancer xenotransplantation, and highlights its advantages and disadvantages.


Zebrafish Xenotransplantation Cancer 



We thank Prof. Toshio Tanaka in Mie University Medical Zebrafish Research Center of Japan for the support of zebrafish research and R. Ikeyama and Y. Tamura for secretarial assistance.

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Lam SH, Wu YL, Vega VB et al (2006) Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24(1):73–75. doi: 10.1038/nbt1169 PubMedCrossRefGoogle Scholar
  2. 2.
    Granato M, Nusslein-Volhard C (1996) Fishing for genes controlling development. Curr Opin Genet Dev 6(4):461–468PubMedCrossRefGoogle Scholar
  3. 3.
    Feitsma H, Cuppen E (2008) Zebrafish as a cancer model. Mol Cancer Res 6(5):685–694. doi: 10.1158/1541-7786.MCR-07-2167 PubMedCrossRefGoogle Scholar
  4. 4.
    Payne E, Look T (2009) Zebrafish modelling of leukaemias. Br J Haematol 146(3):247–256. doi: 10.1111/j.1365-2141.2009.07705.x PubMedCrossRefGoogle Scholar
  5. 5.
    Mullins MC, Hammerschmidt M, Haffter P, Nusslein-Volhard C (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4(3):189–202PubMedCrossRefGoogle Scholar
  6. 6.
    Stern HM, Zon LI (2003) Cancer genetics and drug discovery in the zebrafish. Nat Rev Cancer 3(7):533–539. doi: 10.1038/nrc1126 PubMedCrossRefGoogle Scholar
  7. 7.
    Amsterdam A, Hopkins N (2006) Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet 22(9):473–478. doi: 10.1016/j.tig.2006.06.011 PubMedCrossRefGoogle Scholar
  8. 8.
    Soroldoni D, Hogan BM, Oates AC (2009) Simple and efficient transgenesis with meganuclease constructs in zebrafish. Methods Mol Biol 546:117–130. doi: 10.1007/978-1-60327-977-2_8 PubMedCrossRefGoogle Scholar
  9. 9.
    Kalen M, Wallgard E, Asker N et al (2009) Combination of reverse and chemical genetic screens reveals angiogenesis inhibitors and targets. Chem Biol 16(4):432–441. doi: 10.1016/j.chembiol.2009.02.010 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Doyon Y, McCammon JM, Miller JC et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702–708. doi: 10.1038/nbt1409 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29(8):699–700. doi: 10.1038/nbt.1939 PubMedCrossRefGoogle Scholar
  12. 12.
    Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229. doi: 10.1038/nbt.2501 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    White RM, Sessa A, Burke C et al (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189. doi: 10.1016/j.stem.2007.11.002 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Zhang B, Shimada Y, Kuroyanagi J, Umemoto N, Nishimura Y, Tanaka T (2014) Quantitative phenotyping-based in vivo chemical screening in a zebrafish model of leukemia stem cell xenotransplantation. PLoS ONE 9(1):e85439. doi: 10.1371/journal.pone.0085439 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Developmental Biology 248(2):307–318PubMedCrossRefGoogle Scholar
  16. 16.
    Taylor AM, Zon LI (2009) Zebrafish tumor assays: the state of transplantation. Zebrafish 6(4):339–346. doi: 10.1089/zeb.2009.0607 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Moshal KS, Ferri-Lagneau KF, Leung T (2010) Zebrafish model: worth considering in defining tumor angiogenesis. Trends Cardiovasc Med 20(4):114–119. doi: 10.1016/j.tcm.2010.10.001 PubMedCrossRefGoogle Scholar
  18. 18.
    Eguiara A, Holgado O, Beloqui I et al (2011) Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification. Cell Cycle 10(21):3751–3757. doi: 10.4161/cc.10.21.17921 PubMedCrossRefGoogle Scholar
  19. 19.
    Yang XJ, Cui W, Gu A et al (2013) A novel zebrafish xenotransplantation model for study of glioma stem cell invasion. PLoS ONE 8(4):e61801. doi: 10.1371/journal.pone.0061801 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Zon LI, Peterson R (2010) The new age of chemical screening in zebrafish. Zebrafish 7(1):1. doi: 10.1089/zeb.2010.9996 PubMedCrossRefGoogle Scholar
  21. 21.
    Love DR, Pichler FB, Dodd A, Copp BR, Greenwood DR (2004) Technology for high-throughput screens: the present and future using zebrafish. Curr Opin Biotechnol 15(6):564–571. doi: 10.1016/j.copbio.2004.09.004 PubMedCrossRefGoogle Scholar
  22. 22.
    Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci USA 104(44):17406–17411. doi: 10.1073/pnas.0703446104 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Zhang B, Shimada Y, Kuroyanagi J et al (2014) Zebrafish xenotransplantation model for cancer stem-like cell study and high-throughput screening of inhibitors. Tumour Biol 35(12):11861–11869. doi: 10.1007/s13277-014-2417-8 PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang L, Alt C, Li P et al (2012) An optical platform for cell tracking in adult zebrafish. Cytometry Part A: The Journal of the International Society for Analytical Cytology 81(2):176–182. doi: 10.1002/cyto.a.21167 CrossRefGoogle Scholar
  25. 25.
    Patton EE, Mitchell DL, Nairn RS (2010) Genetic and environmental melanoma models in fish. Pigment Cell & Melanoma Research 23(3):314–337. doi: 10.1111/j.1755-148X.2010.00693.x CrossRefGoogle Scholar
  26. 26.
    Ignatius MS, Langenau DM (2009) Zebrafish as a model for cancer self-renewal. Zebrafish 6(4):377–387. doi: 10.1089/zeb.2009.0610 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Goessling W, North TE, Zon LI (2007) Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors. Nat Methods 4(7):551–553. doi: 10.1038/nmeth1059 PubMedCrossRefGoogle Scholar
  28. 28.
    Spitsbergen J (2007) Imaging neoplasia in zebrafish. Nat Methods 4(7):548–549. doi: 10.1038/nmeth0707-548 PubMedCrossRefGoogle Scholar
  29. 29.
    Mizgireuv IV, Revskoy SY (2006) Transplantable tumor lines generated in clonal zebrafish. Cancer Res 66(6):3120–3125. doi: 10.1158/0008-5472.CAN-05-3800 PubMedCrossRefGoogle Scholar
  30. 30.
    Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI (2003) Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4(12):1238–1246. doi: 10.1038/ni1007 PubMedCrossRefGoogle Scholar
  31. 31.
    Traver D, Winzeler A, Stern HM et al (2004) Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood 104(5):1298–1305. doi: 10.1182/blood-2004-01-0100 PubMedCrossRefGoogle Scholar
  32. 32.
    Langenau DM, Ferrando AA, Traver D et al (2004) In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc Natl Acad Sci USA 101(19):7369–7374. doi: 10.1073/pnas.0402248101 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130(21):5281–5290. doi: 10.1242/dev.00733 PubMedCrossRefGoogle Scholar
  34. 34.
    Stoletov K, Klemke R (2008) Catch of the day: zebrafish as a human cancer model. Oncogene 27(33):4509–4520. doi: 10.1038/onc.2008.95 PubMedCrossRefGoogle Scholar
  35. 35.
    Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26(2):216–220. doi: 10.1038/79951 PubMedCrossRefGoogle Scholar
  36. 36.
    Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28(1):9–28PubMedCrossRefGoogle Scholar
  37. 37.
    Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn 233(4):1560–1570. doi: 10.1002/dvdy.20471 PubMedCrossRefGoogle Scholar
  38. 38.
    Pichler FB, Laurenson S, Williams LC, Dodd A, Copp BR, Love DR (2003) Chemical discovery and global gene expression analysis in zebrafish. Nat Biotechnol 21(8):879–883. doi: 10.1038/nbt852 PubMedCrossRefGoogle Scholar
  39. 39.
    Funfak A, Brosing A, Brand M, Kohler JM (2007) Micro fluid segment technique for screening and development studies on Danio rerio embryos. Lab Chip 7(9):1132–1138. doi: 10.1039/b701116d PubMedCrossRefGoogle Scholar
  40. 40.
    Tamplin OJ, White RM, Jing L et al (2012) Small molecule screening in zebrafish: swimming in potential drug therapies. Wiley Interdisciplinary Reviews Developmental Biology 1(3):459–468. doi: 10.1002/wdev.37 PubMedCrossRefGoogle Scholar
  41. 41.
    Konantz M, Balci TB, Hartwig UF et al (2012) Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 1266:124–137. doi: 10.1111/j.1749-6632.2012.06575.x PubMedCrossRefGoogle Scholar
  42. 42.
    Haldi M, Ton C, Seng WL, McGrath P (2006) Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9(3):139–151. doi: 10.1007/s10456-006-9040-2 PubMedCrossRefGoogle Scholar
  43. 43.
    Lal S, La Du J, Tanguay RL, Greenwood JA (2012) Calpain 2 is required for the invasion of glioblastoma cells in the zebrafish brain microenvironment. J Neurosci Res 90(4):769–781. doi: 10.1002/jnr.22794 PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Lee SL, Rouhi P, Dahl Jensen L et al (2009) Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci USA 106(46):19485–19490. doi: 10.1073/pnas.0909228106 PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Liu NA, Jiang H, Ben-Shlomo A et al (2011) Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci USA 108(20):8414–8419. doi: 10.1073/pnas.1018091108 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Stoletov K, Kato H, Zardouzian E et al (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123(Pt 13):2332–2341. doi: 10.1242/jcs.069443 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Harfouche R, Basu S, Soni S, Hentschel DM, Mashelkar RA, Sengupta S (2009) Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis 12(4):325–338. doi: 10.1007/s10456-009-9154-4 PubMedCrossRefGoogle Scholar
  48. 48.
    Pruvot B, Jacquel A, Droin N et al (2011) Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica 96(4):612–616. doi: 10.3324/haematol.2010.031401 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67(7):2927–2931. doi: 10.1158/0008-5472.CAN-06-4268 PubMedCrossRefGoogle Scholar
  50. 50.
    Rouhi P, Jensen LD, Cao Z et al (2010) Hypoxia-induced metastasis model in embryonic zebrafish. Nat Protoc 5(12):1911–1918. doi: 10.1038/nprot.2010.150 PubMedCrossRefGoogle Scholar
  51. 51.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257. doi: 10.1038/35025220 PubMedCrossRefGoogle Scholar
  52. 52.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. The New England Journal of Medicine 285(21):1182–1186. doi: 10.1056/NEJM197111182852108 PubMedCrossRefGoogle Scholar
  53. 53.
    Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239. doi: 10.1016/j.ccr.2009.01.021 PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Isogai S, Horiguchi M, Weinstein BM (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Developmental Biology 230(2):278–301. doi: 10.1006/dbio.2000.9995 PubMedCrossRefGoogle Scholar
  55. 55.
    Nicoli S, Presta M (2007) The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc 2(11):2918–2923. doi: 10.1038/nprot.2007.412 PubMedCrossRefGoogle Scholar
  56. 56.
    Kuroyanagi J, Shimada Y, Zhang B et al (2014) Zinc finger MYND-type containing 8 promotes tumour angiogenesis via induction of vascular endothelial growth factor-A expression. FEBS Lett 588(18):3409–3416. doi: 10.1016/j.febslet.2014.07.033 PubMedCrossRefGoogle Scholar
  57. 57.
    Moshal KS, Ferri-Lagneau KF, Haider J, Pardhanani P, Leung T (2011) Discriminating different cancer cells using a zebrafish in vivo assay. Cancers 3(4):4102–4113. doi: 10.3390/cancers3044102 PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Nicoli S, Tobia C, Gualandi L, De Sena G, Presta M (2008) Calcitonin receptor-like receptor guides arterial differentiation in zebrafish. Blood 111(10):4965–4972. doi: 10.1182/blood-2007-10-118166 PubMedCrossRefGoogle Scholar
  59. 59.
    Tobia C, Gariano G, De Sena G (1832) Presta M (2013) Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk. Biochim Biophys Acta 9:1371–1377. doi: 10.1016/j.bbadis.2013.01.016 Google Scholar
  60. 60.
    Tobia C, De Sena G, Presta M (2011) Zebrafish embryo, a tool to study tumor angiogenesis. The International Journal of Developmental Biology 55(4–5):505–509. doi: 10.1387/ijdb.103238ct PubMedCrossRefGoogle Scholar
  61. 61.
    Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458. doi: 10.1038/nrc1098 PubMedCrossRefGoogle Scholar
  62. 62.
    Marques IJ, Weiss FU, Vlecken DH et al (2009) Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9:128. doi: 10.1186/1471-2407-9-128 PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Zhao C, Yang H, Shi H et al (2011) Distinct contributions of angiogenesis and vascular co-option during the initiation of primary microtumors and micrometastases. Carcinogenesis 32(8):1143–1150. doi: 10.1093/carcin/bgr076 PubMedCrossRefGoogle Scholar
  64. 64.
    Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768. doi: 10.1038/nrc2499 PubMedCrossRefGoogle Scholar
  65. 65.
    Sun S, Wang Z (2010) ALDH high adenoid cystic carcinoma cells display cancer stem cell properties and are responsible for mediating metastasis. Biochemical and Biophysical Research Communications 396(4):843–848. doi: 10.1016/j.bbrc.2010.04.170 PubMedCrossRefGoogle Scholar
  66. 66.
    Yang LL, Wang GQ, Yang LM, Huang ZB, Zhang WQ, Yu LZ (2014) Endotoxin molecule lipopolysaccharide-induced zebrafish inflammation model: a novel screening method for anti-inflammatory drugs. Molecules 19(2):2390–2409. doi: 10.3390/molecules19022390 PubMedCrossRefGoogle Scholar
  67. 67.
    Goldsmith P (2004) Zebrafish as a pharmacological tool: the how, why and when. Curr Opin Pharmacol 4(5):504–512. doi: 10.1016/j.coph.2004.04.005 PubMedCrossRefGoogle Scholar
  68. 68.
    Shimada Y, Nishimura Y, Tanaka T (2014) Zebrafish-based systems pharmacology of cancer metastasis. Methods Mol Biol 1165:223–238. doi: 10.1007/978-1-4939-0856-1_15 PubMedCrossRefGoogle Scholar
  69. 69.
    Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175–3182. doi: 10.1182/blood-2001-12-0207 PubMedCrossRefGoogle Scholar
  70. 70.
    Smith AC, Raimondi AR, Salthouse CD et al (2010) High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. Blood 115(16):3296–3303. doi: 10.1182/blood-2009-10-246488 PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Mizgirev I, Revskoy S (2010) Generation of clonal zebrafish lines and transplantable hepatic tumors. Nat Protoc 5(3):383–394. doi: 10.1038/nprot.2010.8 PubMedCrossRefGoogle Scholar
  72. 72.
    Snaar-Jagalska BE (2009) ZF-CANCER: developing high-throughput bioassays for human cancers in zebrafish. Zebrafish 6(4):441–443. doi: 10.1089/zeb.2009.0614 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Beibei Zhang
    • 1
  • Chao Xuan
    • 2
  • Yunxi Ji
    • 3
  • Weiming Zhang
    • 4
  • Daogang Wang
    • 3
  1. 1.Mie University Graduate School of MedicineTsuJapan
  2. 2.Department of Clinical Laboratory, The Affiliated Hospital of Medical CollegeQingdao UniversityQingdaoPeople’s Republic of China
  3. 3.Department of GastroenterologyThe First Affiliated Hospital of Guangxi University of Chinese MedicineNanningPeople’s Republic of China
  4. 4.Department of OncologyThe Affiliated Hospital of Binzhou Medical CollegeBinzhouPeople’s Republic of China

Personalised recommendations