Familial Cancer

, Volume 13, Issue 3, pp 401–413 | Cite as

A founder MLH1 mutation in Lynch syndrome families from Piedmont, Italy, is associated with an increased risk of pancreatic tumours and diverse immunohistochemical patterns

  • Iolanda Borelli
  • Guido C. Casalis Cavalchini
  • Serena Del Peschio
  • Monica Micheletti
  • Tiziana Venesio
  • Ivana Sarotto
  • Anna Allavena
  • Luisa Delsedime
  • Marco A. Barberis
  • Giorgia Mandrile
  • Paola Berchialla
  • Paola Ogliara
  • Cecilia Bracco
  • Barbara Pasini
Original Article


The MLH1 c.2252_2253delAA mutation was found in 11 unrelated families from a restricted area south-west of Turin among 140 families with mutations in the mismatch repair genes. The mutation is located in the highly conserved C-terminal region, responsible for dimerization with the PMS2 protein. Twenty-five tumour tissues from 61 individuals with the c.2252_2253delAA mutation were tested for microsatellite instability (MSI) and protein expression. We compared the clinical features of these families versus the rest of our cohort and screened for a founder effect. All but one tumours showed the MSI-high mutator phenotype. Normal, focal and lack of MLH1 staining were observed in 16, 36 and 48 % of tumours, respectively. PMS2 expression was always lost. The mutation co-segregated with Lynch syndrome-related cancers in all informative families. All families but one fulfilled Amsterdam criteria, a frequency higher than in other MLH1 mutants. This was even more evident for AC II (72.7 vs. 57.5 %). Moreover, all families had at least one colon cancer diagnosed before 50 years and one case with multiple Lynch syndrome-related tumours. Interestingly, a statistically significant (p = 0.0057) higher frequency of pancreatic tumours was observed compared to families with other MLH1 mutations: 8.2 % of affected individuals versus 1.6 %. Haplotype analysis demonstrated a common ancestral origin of the mutation, which originated about 1,550 years ago. The mutation is currently classified as having an uncertain clinical significance. Clinical features, tissue analysis and co-segregation with disease strongly support the hypothesis that the MLH1 c.2252_2253delAA mutation has a pathogenic effect.


Lynch syndrome MLH1 mutations MLH1-PMS2 dimerization Focal immunohistochemical expression Founder effect 



We thank Prof. Nicola Migone, for the precious advice and for providing the MLH1 multiple alignment and evolutionary evaluation, Dr. Patrizia Pappi for sequences purification and technical support on microsatellite analysis and Mrs. Katia Pollato for further technical support on IHC and microsatellite analysis.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10689_2014_9726_MOESM1_ESM.pdf (55 kb)
Supplementary material 1 (PDF 55 kb)
10689_2014_9726_MOESM2_ESM.pdf (66 kb)
Supplementary material 2 (PDF 66 kb)
10689_2014_9726_MOESM3_ESM.pdf (33 kb)
Supplementary material 3 (PDF 33 kb)
10689_2014_9726_MOESM4_ESM.pdf (40 kb)
Supplementary material 4 (PDF 39 kb)
10689_2014_9726_MOESM5_ESM.pdf (59 kb)
Supplementary material 5 (PDF 59 kb)


  1. 1.
    Vasen HF, Watson P, Mecklin JP, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116(6):1453–1456PubMedCrossRefGoogle Scholar
  2. 2.
    Umar A, Boland CR, Terdiman JP et al (2004) Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96(4):261–268PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Acharya S, Wilson T, Gradia S et al (1996) hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc Natl Acad Sci USA 93(24):13629–13634PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Guerrette S, Acharya S, Fishel R (1999) The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer. J Biol Chem 274(10):6336–6341PubMedCrossRefGoogle Scholar
  5. 5.
    Thompson BA, Spurdle AB, Plazzer JP et al (2014) Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet 46(2):107–115PubMedCrossRefGoogle Scholar
  6. 6.
    Kondo E, Suzuki H, Horii A, Fukushige S (2003) A yeast two-hybrid assay provides a simple way to evaluate the vast majority of hMLH1 germ-line mutations. Cancer Res 63(12):3302–3308PubMedGoogle Scholar
  7. 7.
    Raevaara TE, Korhonen MK, Lohi H et al (2005) Functional significance and clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology 129(2):537–549PubMedGoogle Scholar
  8. 8.
    Mohd AB, Palama B, Nelson SE, Tomer G, Nguyen M, Huo X, Buermeyer AB (2006) Truncation of the C-terminus of human MLH1 blocks intracellular stabilization of PMS2 and disrupts DNA mismatch repair. DNA Repair 5(3):347–361PubMedCrossRefGoogle Scholar
  9. 9.
    Kosinski J, Hinrichsen I, Bujnicki JM, Friedhoff P, Plotz G (2010) Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair. Hum Mutat 31(8):975–982PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Moisio AL, Sistonen P, Weissenbach J, de la Chapelle A, Peltomaki P (1996) Age and origin of two common MLH1 mutations predisposing to hereditary colon cancer. Am J Hum Genet 59(6):1243–1251PubMedPubMedCentralGoogle Scholar
  11. 11.
    Jager AC, Bisgaard ML, Myrhoj T, Bernstein I, Rehfeld JF, Nielsen FC (1997) Reduced frequency of extracolonic cancers in hereditary nonpolyposis colorectal cancer families with monoallelic hMLH1 expression. Am J Hum Genet 61(1):129–138PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Borras E, Pineda M, Blanco I et al (2010) MLH1 founder mutations with moderate penetrance in Spanish Lynch syndrome families. Cancer Res 70(19):7379–7391PubMedCrossRefGoogle Scholar
  13. 13.
    van Riel E, Ausems MG, Hogervorst FB et al (2010) A novel pathogenic MLH1 missense mutation, c112A > C, pAsn38His, in six families with Lynch syndrome. Hered Cancer Clin Pract 8(1):7PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Therkildsen C, Isinger-Ekstrand A, Ladelund S et al (2012) Cancer risks and immunohistochemical profiles linked to the Danish MLH1 Lynch syndrome founder mutation. Fam Cancer 11(4):579–585PubMedCrossRefGoogle Scholar
  15. 15.
    Tomsic J, Liyanarachchi S, Hampel H et al (2012) An American founder mutation in MLH1. Int J Cancer 130(9):2088–2095PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Foulkes WD, Thiffault I, Gruber SB et al (2002) The founder mutation MSH2*1906G→C is an important cause of hereditary nonpolyposis colorectal cancer in the Ashkenazi Jewish population. Am J Hum Genet 71(6):1395–1412PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Chan TL, Chan YW, Ho JW et al (2004) MSH2 c.1452-1455delAATG is a founder mutation and an important cause of hereditary nonpolyposis colorectal cancer in the southern Chinese population. Am J Hum Genet 74(5):1035–1042PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lynch HT, Coronel SM, Okimoto R et al (2004) A founder mutation of the MSH2 gene and hereditary nonpolyposis colorectal cancer in the United States. JAMA 291(6):718–724PubMedCrossRefGoogle Scholar
  19. 19.
    Stella A, Surdo NC, Lastella P et al (2007) Germline novel MSH2 deletions and a founder MSH2 deletion associated with anticipation effects in HNPCC. Clin Genet 71(2):130–139PubMedCrossRefGoogle Scholar
  20. 20.
    Perez-Cabornero L, Borras FE, Infante SM et al (2011) Characterization of new founder Alu-mediated rearrangements in MSH2 gene associated with a Lynch syndrome phenotype. Cancer Prev Res (Phila) 4(10):1546–1555CrossRefGoogle Scholar
  21. 21.
    Borelli I, Barberis MA, Spina F et al (2013) A unique MSH2 exon 8 deletion accounts for a major portion of all mismatch repair gene mutations in Lynch syndrome families of Sardinian origin. Eur J Hum Genet 21(2):154–161PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hamilton SR, Bosman FT, Boffetta P et al (2010) Carcinoma of the colon and rectum. In: Bosman FT, Carneiro F, Hruban RH, Theise ND (eds) WHO classification of tumours of the digestive system, 4th edn. IARC Press, Lyon, pp 134–146Google Scholar
  23. 23.
    Silverberg SG, Kurman RJ, Nogales F, Mutter GL, Kubik-Huch RA, Tavassoli FA (2003) Epithelial tumours and related lesions. In: Tavassoli FA, Devilee P (eds) Pathology and genetics. Tumours of the breast and female genital organs. IARC Press, Lyon, pp 221–232Google Scholar
  24. 24.
    Ruszkiewicz A, Bennett G, Moore J, Manavis J, Rudzki B, Shen L, Suthers G (2002) Correlation of mismatch repair genes immunohistochemistry and microsatellite instability status in HNPCC-associated tumours. Pathology 34(6):541–547PubMedCrossRefGoogle Scholar
  25. 25.
    Hansen TP, Nielsen O, Fenger C (2006) Optimization of antibodies for detection of the mismatch repair proteins MLH1, MSH2, MSH6, and PMS2 using a biotin-free visualization system. Appl Immunohistochem Mol Morphol 14(1):115–121PubMedCrossRefGoogle Scholar
  26. 26.
    Shia J (2008) Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn 10(4):293–300PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Boland CR, Thibodeau SN, Hamilton SR et al (1998) A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58(22):5248–5257PubMedGoogle Scholar
  28. 28.
    Gille JJ, Hogervorst FB, Pals G, Wijnen JT et al (2002) Genomic deletions of MSH2 and MLH1 in colorectal cancer families detected by a novel mutation detection approach. Br J Cancer 87(8):892–897PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15(1):7–12CrossRefGoogle Scholar
  30. 30.
    Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265PubMedCrossRefGoogle Scholar
  31. 31.
    Donner A, Eliasziw M, Klar N (1994) A comparison of methods for testing homogeneity of proportions in teratologic studies. Stat Med 13(12):1253–1264PubMedCrossRefGoogle Scholar
  32. 32.
    Reeve JP, Rannala B (2002) DMLE+: bayesian linkage disequilibrium gene mapping. Bioinformatics 18(6):894–895PubMedCrossRefGoogle Scholar
  33. 33.
    Risch N, de Leon D, Ozelius L et al (1995) Genetic analysis of idiopathic torsion dystonia in Ashkenazi Jews and their recent descent from a small founder population. Nat Genet 9(2):152–159PubMedCrossRefGoogle Scholar
  34. 34.
    Pensotti V, Radice P, Presciuttini S et al (1997) Mean age of tumour onset in hereditary nonpolyposis colorectal cancer (HNPCC) families correlates with the presence of mutations in DNA mismatch repair genes. Genes Chromosomes Cancer 19(3):135–142PubMedCrossRefGoogle Scholar
  35. 35.
    Han HJ, Yuan Y, Ku JL et al (1996) Germline mutations of hMLH1 and hMSH2 genes in Korean hereditary nonpolyposis colorectal cancer. J Natl Cancer Inst 88(18):1317–1319PubMedCrossRefGoogle Scholar
  36. 36.
    Yuan Y, Han HJ, Zheng S, Park JG (1998) Germline mutations of hMLH1 and hMSH2 genes in patients with suspected hereditary nonpolyposis colorectal cancer and sporadic early-onset colorectal cancer. Dis Colon Rectum 41(4):434–440PubMedCrossRefGoogle Scholar
  37. 37.
    Shin YK, Heo SC, Shin JH, Hong SH, Ku JL, Yoo BC, Kim IJ, Park JG (2004) Germline mutations in MLH1, MSH2 and MSH6 in Korean hereditary non-polyposis colorectal cancer families. Hum Mutat 24(4):351–358PubMedCrossRefGoogle Scholar
  38. 38.
    Nilbert M, Wikman FP, Hansen TV et al (2009) Major contribution from recurrent alterations and MSH6 mutations in the Danish Lynch syndrome population. Fam Cancer 8(1):75–83PubMedCrossRefGoogle Scholar
  39. 39.
    Pistorius SR, Kruppa C, Haas S et al (2000) Clinical consequences of molecular diagnosis in families with mismatch repair gene germline mutations. Int J Colorectal Dis 15(5–6):255–263PubMedGoogle Scholar
  40. 40.
    Wolf B, Henglmueller S, Janschek E et al (2005) Spectrum of germ-line MLH1 and MSH2 mutations in Austrian patients with hereditary nonpolyposis colorectal cancer. Wien Klin Wochenschr 117(7–8):269–277PubMedCrossRefGoogle Scholar
  41. 41.
    Sheng JQ, Fu L, Sun ZQ et al (2008) Mismatch repair gene mutations in Chinese HNPCC patients. Cytogenet Genome Res 122(1):22–27PubMedCrossRefGoogle Scholar
  42. 42.
    Caluseriu O, Di Gregorio C, Lucci-Cordisco E et al (2004) A founder MLH1 mutation in families from the districts of Modena and Reggio-Emilia in northern Italy with hereditary non-polyposis colorectal cancer associated with protein elongation and instability. J Med Genet 41(3):e34PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ponz De Leon MP, Benatti P, Di Gregorio C et al (2007) Genotype-phenotype correlations in individuals with a founder mutation in the MLH1 gene and hereditary non-polyposis colorectal cancer. Scand J Gastroenterol 42(6):746–753CrossRefGoogle Scholar
  44. 44.
    Lastella P, Patruno M, Forte G et al (2011) Identification and surveillance of 19 Lynch syndrome families in southern Italy: report of six novel germline mutations and a common founder mutation. Fam Cancer 10(2):285–295PubMedCrossRefGoogle Scholar
  45. 45.
    Kastrinos F, Mukherjee B, Tayob N et al (2009) Risk of pancreatic cancer in families with Lynch syndrome. JAMA 302(16):1790–1795PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Geary J, Sasieni P, Houlston R, Izatt L, Eeles R, Payne SJ, Fisher S, Hodgson SV (2008) Gene-related cancer spectrum in families with hereditary non-polyposis colorectal cancer (HNPCC). Fam Cancer 7(2):163–172PubMedCrossRefGoogle Scholar
  47. 47.
    Barrow E, Robinson L, Alduaij W, Shenton A, Clancy T, Lalloo F, Hill J, Evans DG (2009) Cumulative lifetime incidence of extracolonic cancers in Lynch syndrome: a report of 121 families with proven mutations. Clin Genet 75(2):141–149PubMedCrossRefGoogle Scholar
  48. 48.
    van der Post RS, Kiemeney LA, Ligtenberg MJ et al (2010) Risk of urothelial bladder cancer in Lynch syndrome is increased, in particular among MSH2 mutation carriers. J Med Genet 47(7):464–470PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Pal T, Akbari MR, Sun P et al (2012) Frequency of mutations in mismatch repair genes in a population-based study of women with ovarian cancer. Br J Cancer 107(10):1783–1790PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hendriks Y, Franken P, Dierssen JW et al (2003) Conventional and tissue microarray immunohistochemical expression analysis of mismatch repair in hereditary colorectal tumors. Am J Pathol 162(2):469–477PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Mangold E, Pagenstecher C, Friedl W et al (2005) Tumours from MSH2 mutation carriers show loss of MSH2 expression but many tumours from MLH1 mutation carriers exhibit weak positive MLH1 staining. J Pathol 207(4):385–395PubMedCrossRefGoogle Scholar
  52. 52.
    Borras E, Pineda M, Brieger A et al (2012) Comprehensive functional assessment of MLH1 variants of unknown significance. Hum Mutat 33(11):1576–1588PubMedCrossRefGoogle Scholar
  53. 53.
    Takahashi M, Shimodaira H, Andreutti-Zaugg C, Iggo R, Kolodner RD, Ishioka C (2007) Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res 67(10):4595–4604PubMedCrossRefGoogle Scholar
  54. 54.
    Hinrichsen I, Brieger A, Trojan J, Zeuzem S, Nilbert M, Plotz G (2013) Expression defect size among unclassified MLH1 variants determines pathogenicity in Lynch syndrome diagnosis. Clin Cancer Res 19(9):2432–2441PubMedCrossRefGoogle Scholar
  55. 55.
    Wahlberg SS, Schmeits J, Thomas G, Loda M, Garber J, Syngal S, Kolodner RD, Fox E (2002) Evaluation of microsatellite instability and immunohistochemistry for the prediction of germ-line MSH2 and MLH1 mutations in hereditary nonpolyposis colon cancer families. Cancer Res 62(12):3485–3492PubMedGoogle Scholar
  56. 56.
    Frischmeyer PA, Dietz HC (1999) Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 8(10):1893–1900PubMedCrossRefGoogle Scholar
  57. 57.
    Leong V, Lorenowicz J, Kozij N, Guarne A (2009) Nuclear import of human MLH1, PMS2, and MutLalpha: redundancy is the key. Mol Carcinog 48(8):742–750PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Iolanda Borelli
    • 1
    • 2
  • Guido C. Casalis Cavalchini
    • 2
  • Serena Del Peschio
    • 1
  • Monica Micheletti
    • 2
  • Tiziana Venesio
    • 3
  • Ivana Sarotto
    • 3
  • Anna Allavena
    • 1
  • Luisa Delsedime
    • 4
  • Marco A. Barberis
    • 2
  • Giorgia Mandrile
    • 5
    • 6
  • Paola Berchialla
    • 5
  • Paola Ogliara
    • 1
  • Cecilia Bracco
    • 1
    • 2
  • Barbara Pasini
    • 1
    • 2
  1. 1.Department of Medical SciencesUniversity of TurinTurinItaly
  2. 2.Medical Genetics UnitTurinItaly
  3. 3.Unit of PathologyInstitute for Cancer Research and TreatmentTurinItaly
  4. 4.Pathology UnitTurinItaly
  5. 5.Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
  6. 6.Medical Genetics UnitSan Luigi University HospitalOrbassanoItaly

Personalised recommendations