Skip to main content
Log in

Aberrant splicing caused by a MLH1 splice donor site mutation found in a young Japanese patient with Lynch syndrome

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Lynch syndrome, also known as hereditary non-polyposis colorectal cancer, characterized by predisposition to colorectal cancer and other associated cancers, is an autosomal-dominant disorder mainly caused by germline mutations in DNA mismatch repair (MMR) genes such as MLH1, MSH2, and MSH6. Some mutations that disrupt splice donor or acceptor sites cause aberrant mRNA splicing. These mutations are generally considered as pathogenic ones, however, it is sometimes uneasy to accurately predict their pathogenicity without functional assays, particularly when the mutation is a single nucleotide substitution. In this report, we describe a 25-year-old patient with Lynch syndrome who carries a germline variant in a splice donor site of the MLH1 gene (c.790 + 5 G > T), which was first detected among Asian populations. The immunohistochemical analysis revealed loss of MLH1 protein expression in the tumor. Our splicing assay confirmed that the intronic MLH1 variant actually caused aberrant splicing, supporting its pathogenic effect. Our data accumulate more information on the genotype-phenotype relationships in patients with Lynch syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vasen HF, Moslein G, Alonso A, Bernstein I, Bertario L, Blanco I, Burn J, Capella G, Engel C, Frayling I, Friedl W, Hes FJ, Hodgson S, Mecklin JP, Moller P, Nagengast F, Parc Y, Renkonen-Sinisalo L, Sampson JR, Stormorken A, Wijnen J (2007) Guidelines for the clinical management of Lynch syndrome (hereditary non-polyposis cancer). J Med Genet 44(6):353–362

    Article  PubMed  CAS  Google Scholar 

  2. de la Chapelle A (2005) The incidence of Lynch syndrome. Fam Cancer 4(3):233–237

    Article  PubMed  Google Scholar 

  3. Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5(2):89–99

    Article  PubMed  CAS  Google Scholar 

  4. Naruse H, Ikawa N, Yamaguchi K, Nakamura Y, Arai M, Ishioka C, Sugano K, Tamura K, Tomita N, Matsubara N, Yoshida T, Moriya Y, Furukawa Y (2009) Determination of splice-site mutations in Lynch syndrome (hereditary non-polyposis colorectal cancer) patients using functional splicing assay. Fam Cancer 8(4):509–517

    Article  PubMed  CAS  Google Scholar 

  5. Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in Genie. J Comput Biol 4(3):311–323

    Article  PubMed  CAS  Google Scholar 

  6. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37(9):e67

    Article  PubMed  Google Scholar 

  7. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  PubMed  CAS  Google Scholar 

  8. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249

    Article  PubMed  CAS  Google Scholar 

  9. Vasen HF, Mecklin JP, Khan PM, Lynch HT (1991) The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis Colon Rectum 34(5):424–425

    Article  PubMed  CAS  Google Scholar 

  10. Genuardi M, Viel A, Bonora D, Capozzi E, Bellacosa A, Leonardi F, Valle R, Ventura A, Pedroni M, Boiocchi M, Neri G (1998) Characterization of MLH1 and MSH2 alternative splicing and its relevance to molecular testing of colorectal cancer susceptibility. Hum Genet 102(1):15–20

    Article  PubMed  CAS  Google Scholar 

  11. Sahashi K, Masuda A, Matsuura T, Shinmi J, Zhang Z, Takeshima Y, Matsuo M, Sobue G, Ohno K (2007) In vitro and in silicon analysis reveals an efficient algorithm to predict the splicing consequences of mutations at the 5′ splice sites. Nucleic Acids Res 35(18):5995–6003

    Article  PubMed  CAS  Google Scholar 

  12. Krawczak M, Thomas NS, Hundrieser B, Mort M, Wittig M, Hampe J, Cooper DN (2007) Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 28(2):150–158

    Article  PubMed  CAS  Google Scholar 

  13. Lastella P, Resta N, Miccolis I, Quagliarella A, Guanti G, Stella A (2004) Site directed mutagenesis of hMLH1 exonic splicing enhancers does not correlate with splicing disruption. J Med Genet 41(6):e72

    Article  PubMed  CAS  Google Scholar 

  14. Auclair J, Busine MP, Navarro C, Ruano E, Montmain G, Desseigne F, Saurin JC, Lasset C, Bonadona V, Giraud S, Puisieux A, Wang Q (2006) Systematic mRNA analysis for the effect of MLH1 and MSH2 missense and silent mutations on aberrant splicing. Hum Mutat 27(2):145–154

    Article  PubMed  CAS  Google Scholar 

  15. Pagenstecher C, Wehner M, Friedl W, Rahner N, Aretz S, Friedrichs N, Sengteller M, Henn W, Buettner R, Propping P, Mangold E (2006) Aberrant splicing in MLH1 and MSH2 due to exonic and intronic variants. Hum Genet 119(1–2):9–22

    Article  PubMed  CAS  Google Scholar 

  16. Tournier I, Vezain M, Martins A, Charbonnier F, Baert-Desurmont S, Olschwang S, Wang Q, Buisine MP, Soret J, Tazi J, Frebourg T, Tosi M (2008) A large fraction of unclassified variants of the mismatch repair genes MLH1 and MSH2 is associated with splicing defects. Hum Mutat 29(12):1412–1424

    Article  PubMed  CAS  Google Scholar 

  17. Wagner A, Barrows A, Wijnen JT, van der Klift H, Franken PF, Verkuijlen P, Nakagawa H, Geugien M, Jaghmohan-Changur S, Breukel C, Meijers-Heijboer H, Morreau H, van Puijenbroek M, Burn J, Coronel S, Kinarski Y, Okimoto R, Watson P, Lynch JF, de la Chapelle A, Lynch HT, Fodde R (2003) Molecular analysis of hereditary nonpolyposis colorectal cancer in the United States: high mutation detection rate among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene. Am J Hum Genet 72(5):1088–1100

    Article  PubMed  CAS  Google Scholar 

  18. Zhao Y, Miyashita K, Ando T, Kakeji Y, Yamanaka T, Taguchi K, Ushijima T, Oda S, Maehara Y (2008) Exclusive KRAS mutation in microsatellite-unstable human colorectal carcinomas with sequence alterations in the DNA mismatch repair gene, MLH1. Gene 423(2):188–193

    Article  PubMed  CAS  Google Scholar 

  19. Giraldo A, Gomez A, Salguero G, Garcia H, Aristizabal F, Gutierrez O, Angel LA, Padron J, Martinez C, Martinez H, Malaver O, Florez L, Barvo R (2005) MLH1 and MSH2 mutations in Colombian families with hereditary nonpolyposis colorectal cancer (Lynch syndrome)–description of four novel mutations. Fam Cancer 4(4):285–290

    Article  PubMed  CAS  Google Scholar 

  20. Ewald J, Rodrigue CM, Mourra N, Lefevre JH, Flejou JF, Tiret E, Gespach C, Parc YR (2007) Immunohistochemical staining for mismatch repair proteins, and its relevance in the diagnosis of hereditary non-polyposis colorectal cancer. Br J Surg 94(8):1020–1027

    Article  PubMed  CAS  Google Scholar 

  21. Shin YK, Heo SC, Shin JH, Hong SH, Ku JL, Yoo BC, Kim IJ, Park JG (2004) Germline mutations in MLH1, MSH2 and MSH6 in Korean hereditary non-polyposis colorectal cancer families. Hum Mutat 24(4):351

    Article  PubMed  Google Scholar 

  22. Kohonen-Corish M, Ross VL, Doe WF, Kool DA, Edkins E, Faragher I, Wijnen J, Khan PM, Macrae F, St John DJ (1996) RNA-based mutation screening in hereditary nonpolyposis colorectal cancer. Am J Hum Genet 59(4):818–824

    PubMed  CAS  Google Scholar 

  23. Bianchi F, Raponi M, Piva F, Viel A, Bearzi I, Galizia E, Bracci R, Belvederesi L, Loretelli C, Brugiati C, Corradini F, Baralle D, Cellerino R (2011) An intronic mutation in MLH1 associated with familial colon and breast cancer. Fam Cancer 10(1):27–35

    Article  PubMed  CAS  Google Scholar 

  24. Yan SY, Zhou XY, Du X, Zhang TM, Lu YM, Cai SJ, Xu XL, Yu BH, Zhou HH, Shi DR (2007) Three novel missense germline mutations in different exons of MSH6 gene in Chinese hereditary non-polyposis colorectal cancer families. World J Gastroenterol 13(37):5021–5024

    PubMed  CAS  Google Scholar 

  25. Raevaara TE, Korhonen MK, Lohi H, Hampel H, Lynch E, Lonnqvist KE, Holinski-Feder E, Sutter C, McKinnon W, Duraisamy S, Gerdes AM, Peltomaki P, Kohonen-Ccorish M, Mangold E, Macrae F, Greenblatt M, de la Chapelle A, Nystrom M (2005) Functional significance and clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology 129(2):537–549

    PubMed  CAS  Google Scholar 

  26. Takahashi M, Shimodaira H, Andreutti-Zaugg C, Iggo R, Kolodner RD, Ishioka C (2007) Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res 67(10):4595–4604

    Article  PubMed  CAS  Google Scholar 

  27. Kansikas M, Kariola R, Nystrom M (2011) Verification of the three-step model in assessing the pathogenicity of mismatch repair gene variants. Hum Mutat 32(1):107–115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Ministry of Education, Science, Sports and Culture.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikashi Ishioka.

Additional information

This study is contacted for HNPCC registry and genetic testing project of the Japanese Society for Cancer of the Colon and Rectum (JSCCR).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, M., Furukawa, Y., Shimodaira, H. et al. Aberrant splicing caused by a MLH1 splice donor site mutation found in a young Japanese patient with Lynch syndrome. Familial Cancer 11, 559–564 (2012). https://doi.org/10.1007/s10689-012-9547-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-012-9547-1

Keywords

Navigation