Skip to main content
Log in

Clinical correlation and molecular evaluation confirm that the MLH1 p.Arg182Gly (c.544A>G) mutation is pathogenic and causes Lynch syndrome

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Approximately 25 % of mismatch repair (MMR) variants are exonic nucleotide substitutions. Some result in the substitution of one amino acid for another in the protein sequence, so-called missense variants, while others are silent. The interpretation of the effect of missense and silent variants as deleterious or neutral is challenging. Pre-symptomatic testing for clinical use is not recommended for relatives of individuals with variants classified as ‘of uncertain significance’. These relatives, including non-carriers, are considered at high-risk as long as the contribution of the variant to disease causation cannot be determined. This results in continuing anxiety, and the application of potentially unnecessary screening and prophylactic interventions. We encountered a large Irish Lynch syndrome kindred that carries the c.544A>G (p.Arg182Gly) alteration in the MLH1 gene and we undertook to study the variant. The clinical significance of the variant remains unresolved in the literature. Data are presented on cancer incidence within five kindreds with the same germline missense variant in the MLH1 MMR gene. Extensive testing of relevant family members in one kindred, a review of the literature, review of online MMR mutation databases and use of in silico phenotype prediction tools were undertaken to study the significance of this variant. Clinical, histological, immunohistochemical and molecular evidence from these families and other independent clinical and scientific evidence indicates that the MLH1 p.Arg182Gly (c.544A>G) change causes Lynch syndrome and supports reclassification of the variant as pathogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348:919–932

    Article  PubMed  CAS  Google Scholar 

  2. Peltomaki P, Vasen HF (2004) Mutations associated with HNPCC predisposition—Update of ICG-HNPCC/InSiGHT mutation database. Dis Markers 20:269–276

    PubMed  Google Scholar 

  3. Plon SE, Eccles DM, Easton D, Foulkes WD, Genuardi M, Greenblatt MS, Hogervorst FBL, Hoogerbrugge N, Spurdle AB, Tavtigian SV (2008) Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 29(11):1282–1291

    Article  PubMed  CAS  Google Scholar 

  4. Vasen HF, Mecklin JP, Khan PM, Lynch HT (1991) The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis Colon Rectum 34:424–425

    Article  PubMed  CAS  Google Scholar 

  5. Woods MO, Williams P, Careen A, Edwards L, Bartlett S, McLaughlin JR, Younghusband HB (2007) A new variant database for mismatch repair genes associated with Lynch syndrome. Hum Mutat 28(7):669–673

    Article  PubMed  CAS  Google Scholar 

  6. Ou J, Niessen RC, Vonk J, Westers H, Hofstra RMW, Sijmons RH (2008) A database to support the interpretation of human mismatch repair gene variants. Hum Mutat 29(11):1337–1341

    Article  PubMed  CAS  Google Scholar 

  7. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S (1998) A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    PubMed  CAS  Google Scholar 

  8. Lao-Sirieix P, Caldos C, Fitzgerald RC (2010) Curr Opin Genet Dev 20:210–217

    Article  PubMed  CAS  Google Scholar 

  9. Domingo E, Laiho P, Ollikainen M, Pinto M, Wang L, French AJ, Westra J, Frebourg T, Espin E, Armengol M, Hamelin R, Yamamoto H, Hofstra RM, Seruca R, Lindblom A, Peltomaki P, Thibodeau SN, Aaltonen LA, Schwartz S Jr (2004) BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet 41:664–668

    Article  PubMed  CAS  Google Scholar 

  10. InSiGHT Database (2009) www.insight-group.org/mutations. Cited 22 July 2009

  11. Rahner N (2009) University of Bonn, Institute of Human Genetics, Germany, personal communication

  12. Wang Q, Desseigne F, Lasset C, Saurin JC, Navarro C, Yagci T, Keser I, Bagci H, Luleci G, Gelen T, Chayvialle JA, Puisieux A, Ozturk M (1997) Germline hMSH2 and hMLH1 gene mutations in incomplete HNPCC families. Int J Cancer 73:831–836

    Article  PubMed  CAS  Google Scholar 

  13. Wang Q, Lasset C, Desseigne F, Saurin JC, Maugard C, Navarro C, Ruano E, Descos L, Trillet-Lenoir V, Bosset JF, Puisieux A (1999) Prevalence of germline mutations of hMLH1, hMSH2, hPMS1, hPMS2, and hMSH6 genes in 75 French kindreds with nonpolyposis colorectal cancer. Hum Genet 105:79–85

    Article  PubMed  CAS  Google Scholar 

  14. Evans DGR (2011) Dept. of Clinical Genetics, St. Mary’s Hospital, Manchester, personal communication

  15. Hodgson SV (2011) St. George’s Hospital, London, personal communication

  16. Stella A, Wagner A, Shito K, Lipkin SM, Watson P, Guanti G, Lynch HT, Fodde R, Liu B (2001) A nonsense mutation in MLH1 causes exon skipping in three unrelated HNPCC families. Cancer Res 61:7020–7024

    PubMed  CAS  Google Scholar 

  17. Auclair J, Buisine MP, Navarro C, Ruano E, Montmain G, Desseigne F, Saurin JC, Lasset C, Bonadona V, Giraud S, Puisieux A, Wang Q (2006) Systematic mRNA analysis for the effect of MLH1 and MSH2 missense and silent mutations on aberrant splicing. Hum Mutat 27(2):145–154

    Article  PubMed  CAS  Google Scholar 

  18. Hilbert, P. (2009) Institut de Pathologie et de Génétique, Département de Biologie Moléculaire, Gosselies, Belgium, personal communication

  19. Eng L, Coutinho G, Nahas S, Yeo G, Tanouye R, Babaei M, Dork T, Burge C, Gatti RA (2004) Nonclassical splicing mutations in the coding and noncoding regions of the ATM Gene: maximum entropy estimates of splice junction strengths. Hum Mutat 23(1):67–76

    Article  PubMed  CAS  Google Scholar 

  20. Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in genie. J Comput Biol 4(3):311–323

    Article  PubMed  CAS  Google Scholar 

  21. Brunak S, Engelbrecht J, Knudsen S (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220:49–65

    Article  PubMed  CAS  Google Scholar 

  22. Junop MS, Yang W, Funchain P, Clendenin W, Miller JH (2003) In vitro and in vivo studies of MutS, MutL and MutH mutants: correlation of mismatch repair and DNA recombination. DNA Repair 2:387–405

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi M, Shimodaira H, Andreutti-Zaugg C, Iggo R, Kolodner RD, Ishioka C (2007) Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res 67(10):4595–4604

    Article  PubMed  CAS  Google Scholar 

  24. Ou J, Niessen RC, Lützen A, Sijmons RH, Kleibeuker JH, de Wind N, Rasmussen LJ, Hofstra RMW (2007) Functional analysis helps to clarify the clinical importance of unclassified variants in DNA mismatch repair genes. Hum Mutat 28(11):1047–1054

    Article  PubMed  CAS  Google Scholar 

  25. Chao EC, Velasquez JL, Witherspoon MSL, Rozek LS, Peel D, Ng P, Gruber SB, Watson P, Rennert G, Anton-Culver H, Lynch H, Lipkin SM (2008) Accurate classification of MLH1/MSH2 missense variants with multivarate analysis of protein polymorphisms-mismatch Repair (MAPP-MMR). Hum Mutat 29(6):852–860

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to sincerely thank the members of the families described, Dr. Eric Rosenthal at Myriad Genetics Laboratories and to acknowledge the contribution of Wilma Ormiston, T.J. Boyle, C.H. Nolan, B.J. Mehigan, R.B. Stephens, D. Flannery of St. James’s Hospital, Stephen G. Smith of the Department of Microbiology TCD, Steven G. Gray and Kathy A. Gately of the Translational Research Group, TCD, Paul. C. Smyth and Orla M. Sheils of the Dept. of Histopathology TCD, Michael O. Woods and Amanda Dohey of Memorial University of Newfoundland, Canada, Dr. Qing Wang, Unité d’Oncologie Moléculaire, Centre Léon Bérard, Lyon, France, Peter J. Holdsworth of the Dept. of General Surgery, Huddersfield Royal Infirmary, U.K, Dr. Julian W. Adlard of the Dept. of Clinical Genetics, Yorkshire Regional Genetic Service, Leeds, U.K, Nils Rahner and Verena Steinke of University of Bonn, Institute of Human Genetics, Germany, Pascale Hilbert of Institut de Pathologie et de Génétique, Département de Biologie Moléculaire, Gosselies, Belgium, Professor Gareth Evans of St. Mary’s Hospital, Manchester, U.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Farrell.

Appendices

Appendix 1

See Fig. 3.

Fig. 3
figure 3

Pedigree Identification number CRC 11

Appendix 2

See Fig. 4.

Fig. 4
figure 4

Sequencing of exon 6 and evidence of c.544A>G base change in patient III.4 (Appendix 1) proximal colon cancer diagnosed aged 39 with loss of expression of MLH1 and PMS2. b Sequencing of exon 6 of MLH1 from control. Patient unaffected with colon cancer, no family history of cancer known

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrell, M.P., Hughes, D.J., Berry, I.R. et al. Clinical correlation and molecular evaluation confirm that the MLH1 p.Arg182Gly (c.544A>G) mutation is pathogenic and causes Lynch syndrome. Familial Cancer 11, 509–518 (2012). https://doi.org/10.1007/s10689-012-9544-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-012-9544-4

Keywords

Navigation