Advertisement

Familial Cancer

, Volume 11, Issue 3, pp 509–518 | Cite as

Clinical correlation and molecular evaluation confirm that the MLH1 p.Arg182Gly (c.544A>G) mutation is pathogenic and causes Lynch syndrome

  • Michael P. Farrell
  • David J. Hughes
  • Ian R. Berry
  • David J. Gallagher
  • Emily A. Glogowski
  • Stewart J. Payne
  • Michael J. Kennedy
  • Róisín M. Clarke
  • Susan A. White
  • Cian B. Muldoon
  • Fiona Macdonald
  • Pauline Rehal
  • Danielle Crompton
  • Solvig Roring
  • Sarah T. Duke
  • Trudi McDevitt
  • David E. Barton
  • Shirley V. Hodgson
  • Andrew J. Green
  • Peter A. Daly
Original Article

Abstract

Approximately 25 % of mismatch repair (MMR) variants are exonic nucleotide substitutions. Some result in the substitution of one amino acid for another in the protein sequence, so-called missense variants, while others are silent. The interpretation of the effect of missense and silent variants as deleterious or neutral is challenging. Pre-symptomatic testing for clinical use is not recommended for relatives of individuals with variants classified as ‘of uncertain significance’. These relatives, including non-carriers, are considered at high-risk as long as the contribution of the variant to disease causation cannot be determined. This results in continuing anxiety, and the application of potentially unnecessary screening and prophylactic interventions. We encountered a large Irish Lynch syndrome kindred that carries the c.544A>G (p.Arg182Gly) alteration in the MLH1 gene and we undertook to study the variant. The clinical significance of the variant remains unresolved in the literature. Data are presented on cancer incidence within five kindreds with the same germline missense variant in the MLH1 MMR gene. Extensive testing of relevant family members in one kindred, a review of the literature, review of online MMR mutation databases and use of in silico phenotype prediction tools were undertaken to study the significance of this variant. Clinical, histological, immunohistochemical and molecular evidence from these families and other independent clinical and scientific evidence indicates that the MLH1 p.Arg182Gly (c.544A>G) change causes Lynch syndrome and supports reclassification of the variant as pathogenic.

Keywords

Immunohistochemical analysis Lynch syndrome Microsatellite instability Mismatch repair Muir-Torre syndrome Mutl homolog 1 Variant of uncertain significance 

Notes

Acknowledgments

The authors wish to sincerely thank the members of the families described, Dr. Eric Rosenthal at Myriad Genetics Laboratories and to acknowledge the contribution of Wilma Ormiston, T.J. Boyle, C.H. Nolan, B.J. Mehigan, R.B. Stephens, D. Flannery of St. James’s Hospital, Stephen G. Smith of the Department of Microbiology TCD, Steven G. Gray and Kathy A. Gately of the Translational Research Group, TCD, Paul. C. Smyth and Orla M. Sheils of the Dept. of Histopathology TCD, Michael O. Woods and Amanda Dohey of Memorial University of Newfoundland, Canada, Dr. Qing Wang, Unité d’Oncologie Moléculaire, Centre Léon Bérard, Lyon, France, Peter J. Holdsworth of the Dept. of General Surgery, Huddersfield Royal Infirmary, U.K, Dr. Julian W. Adlard of the Dept. of Clinical Genetics, Yorkshire Regional Genetic Service, Leeds, U.K, Nils Rahner and Verena Steinke of University of Bonn, Institute of Human Genetics, Germany, Pascale Hilbert of Institut de Pathologie et de Génétique, Département de Biologie Moléculaire, Gosselies, Belgium, Professor Gareth Evans of St. Mary’s Hospital, Manchester, U.K.

References

  1. 1.
    Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348:919–932PubMedCrossRefGoogle Scholar
  2. 2.
    Peltomaki P, Vasen HF (2004) Mutations associated with HNPCC predisposition—Update of ICG-HNPCC/InSiGHT mutation database. Dis Markers 20:269–276PubMedGoogle Scholar
  3. 3.
    Plon SE, Eccles DM, Easton D, Foulkes WD, Genuardi M, Greenblatt MS, Hogervorst FBL, Hoogerbrugge N, Spurdle AB, Tavtigian SV (2008) Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 29(11):1282–1291PubMedCrossRefGoogle Scholar
  4. 4.
    Vasen HF, Mecklin JP, Khan PM, Lynch HT (1991) The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis Colon Rectum 34:424–425PubMedCrossRefGoogle Scholar
  5. 5.
    Woods MO, Williams P, Careen A, Edwards L, Bartlett S, McLaughlin JR, Younghusband HB (2007) A new variant database for mismatch repair genes associated with Lynch syndrome. Hum Mutat 28(7):669–673PubMedCrossRefGoogle Scholar
  6. 6.
    Ou J, Niessen RC, Vonk J, Westers H, Hofstra RMW, Sijmons RH (2008) A database to support the interpretation of human mismatch repair gene variants. Hum Mutat 29(11):1337–1341PubMedCrossRefGoogle Scholar
  7. 7.
    Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S (1998) A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257PubMedGoogle Scholar
  8. 8.
    Lao-Sirieix P, Caldos C, Fitzgerald RC (2010) Curr Opin Genet Dev 20:210–217PubMedCrossRefGoogle Scholar
  9. 9.
    Domingo E, Laiho P, Ollikainen M, Pinto M, Wang L, French AJ, Westra J, Frebourg T, Espin E, Armengol M, Hamelin R, Yamamoto H, Hofstra RM, Seruca R, Lindblom A, Peltomaki P, Thibodeau SN, Aaltonen LA, Schwartz S Jr (2004) BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet 41:664–668PubMedCrossRefGoogle Scholar
  10. 10.
    InSiGHT Database (2009) www.insight-group.org/mutations. Cited 22 July 2009
  11. 11.
    Rahner N (2009) University of Bonn, Institute of Human Genetics, Germany, personal communicationGoogle Scholar
  12. 12.
    Wang Q, Desseigne F, Lasset C, Saurin JC, Navarro C, Yagci T, Keser I, Bagci H, Luleci G, Gelen T, Chayvialle JA, Puisieux A, Ozturk M (1997) Germline hMSH2 and hMLH1 gene mutations in incomplete HNPCC families. Int J Cancer 73:831–836PubMedCrossRefGoogle Scholar
  13. 13.
    Wang Q, Lasset C, Desseigne F, Saurin JC, Maugard C, Navarro C, Ruano E, Descos L, Trillet-Lenoir V, Bosset JF, Puisieux A (1999) Prevalence of germline mutations of hMLH1, hMSH2, hPMS1, hPMS2, and hMSH6 genes in 75 French kindreds with nonpolyposis colorectal cancer. Hum Genet 105:79–85PubMedCrossRefGoogle Scholar
  14. 14.
    Evans DGR (2011) Dept. of Clinical Genetics, St. Mary’s Hospital, Manchester, personal communicationGoogle Scholar
  15. 15.
    Hodgson SV (2011) St. George’s Hospital, London, personal communicationGoogle Scholar
  16. 16.
    Stella A, Wagner A, Shito K, Lipkin SM, Watson P, Guanti G, Lynch HT, Fodde R, Liu B (2001) A nonsense mutation in MLH1 causes exon skipping in three unrelated HNPCC families. Cancer Res 61:7020–7024PubMedGoogle Scholar
  17. 17.
    Auclair J, Buisine MP, Navarro C, Ruano E, Montmain G, Desseigne F, Saurin JC, Lasset C, Bonadona V, Giraud S, Puisieux A, Wang Q (2006) Systematic mRNA analysis for the effect of MLH1 and MSH2 missense and silent mutations on aberrant splicing. Hum Mutat 27(2):145–154PubMedCrossRefGoogle Scholar
  18. 18.
    Hilbert, P. (2009) Institut de Pathologie et de Génétique, Département de Biologie Moléculaire, Gosselies, Belgium, personal communicationGoogle Scholar
  19. 19.
    Eng L, Coutinho G, Nahas S, Yeo G, Tanouye R, Babaei M, Dork T, Burge C, Gatti RA (2004) Nonclassical splicing mutations in the coding and noncoding regions of the ATM Gene: maximum entropy estimates of splice junction strengths. Hum Mutat 23(1):67–76PubMedCrossRefGoogle Scholar
  20. 20.
    Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in genie. J Comput Biol 4(3):311–323PubMedCrossRefGoogle Scholar
  21. 21.
    Brunak S, Engelbrecht J, Knudsen S (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220:49–65PubMedCrossRefGoogle Scholar
  22. 22.
    Junop MS, Yang W, Funchain P, Clendenin W, Miller JH (2003) In vitro and in vivo studies of MutS, MutL and MutH mutants: correlation of mismatch repair and DNA recombination. DNA Repair 2:387–405PubMedCrossRefGoogle Scholar
  23. 23.
    Takahashi M, Shimodaira H, Andreutti-Zaugg C, Iggo R, Kolodner RD, Ishioka C (2007) Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res 67(10):4595–4604PubMedCrossRefGoogle Scholar
  24. 24.
    Ou J, Niessen RC, Lützen A, Sijmons RH, Kleibeuker JH, de Wind N, Rasmussen LJ, Hofstra RMW (2007) Functional analysis helps to clarify the clinical importance of unclassified variants in DNA mismatch repair genes. Hum Mutat 28(11):1047–1054PubMedCrossRefGoogle Scholar
  25. 25.
    Chao EC, Velasquez JL, Witherspoon MSL, Rozek LS, Peel D, Ng P, Gruber SB, Watson P, Rennert G, Anton-Culver H, Lynch H, Lipkin SM (2008) Accurate classification of MLH1/MSH2 missense variants with multivarate analysis of protein polymorphisms-mismatch Repair (MAPP-MMR). Hum Mutat 29(6):852–860PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Michael P. Farrell
    • 1
  • David J. Hughes
    • 2
  • Ian R. Berry
    • 3
  • David J. Gallagher
    • 1
  • Emily A. Glogowski
    • 4
  • Stewart J. Payne
    • 5
  • Michael J. Kennedy
    • 6
  • Róisín M. Clarke
    • 7
  • Susan A. White
    • 8
  • Cian B. Muldoon
    • 8
  • Fiona Macdonald
    • 9
  • Pauline Rehal
    • 9
  • Danielle Crompton
    • 9
  • Solvig Roring
    • 10
  • Sarah T. Duke
    • 10
  • Trudi McDevitt
    • 10
  • David E. Barton
    • 10
  • Shirley V. Hodgson
    • 11
  • Andrew J. Green
    • 10
  • Peter A. Daly
    • 6
  1. 1.Department of Cancer GeneticsMater Private HospitalDublin 7Ireland
  2. 2.Centre for Systems Medicine, Department of Physiology and Medical PhysicsRoyal College of SurgeonsDublin 2Ireland
  3. 3.Yorkshire Regional Genetics Service DNA Lab, Ashley WingSt. James’s University HospitalLeedsUK
  4. 4.Clinical Genetics ServiceMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  5. 5.North West Thames Regional Genetics Service, Kennedy-Galton CentreNorthwick Park HospitalHarrowUK
  6. 6.Department of Medical OncologySt. James’s HospitalDublin 8Ireland
  7. 7.Department of Cancer GeneticsSt. James’s HospitalDublin 8Ireland
  8. 8.Central Pathology Laboratory, Department of HistopathologySt. James’s HospitalDublin 8Ireland
  9. 9.West Midlands Regional Genetics Service, Clinical Genetics UnitBirmingham Women’s HospitalBirminghamUK
  10. 10.National Centre for Medical GeneticsOur Lady’s Children’s HospitalDublin 12Ireland
  11. 11.St. George’s HospitalLondonUK

Personalised recommendations