Skip to main content

Advertisement

Log in

Familial colorectal cancer: eleven years of data from a registry program in Switzerland

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Deleterious germ-line variants involving the DNA mismatch repair (MMR) genes have been identified as the cause of the hereditary nonpolyposis colorectal cancer syndrome known as the Lynch syndrome, but in numerous familial clusters of colon cancer, the cause remains obscure. We analyzed data for 235 German-speaking Swiss families with nonpolyposis forms of colorectal cancer (one of the largest and most ethnically homogeneous cohorts of its kind) to identify the phenotypic features of forms that cannot be explained by MMR deficiency. Based on the results of microsatellite instability analysis and immunostaining of proband tumor samples, the kindreds were classified as MMR-proficient (n = 134, 57%) or MMR-deficient (n = 101, 43%). In 81 of the latter kindreds, deleterious germ-line MMR-gene variants have already been found (62 different variants, including 13 that have not been previously reported), confirming the diagnosis of Lynch syndrome. Compared with MMR-deficient kindreds, the 134 who were MMR proficient were less likely to meet the Amsterdam Criteria II regarding autosomal dominant transmission. They also had primary cancers with later onset and colon-segment distribution patterns resembling those of sporadic colorectal cancers, and they had lower frequencies of metachronous colorectal cancers and extracolonic cancers in general. Although the predisposition to colorectal cancer in these kindreds is probably etiologically heterogeneous, we were unable to identify distinct phenotypic subgroups solely on the basis of the clinical data collected in this study. Further insight, however, is expected to emerge from the molecular characterization of their tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MSI:

Microsatellite instability

IHC:

Immunohistochemistry

AC II:

Amsterdam criteria II

rBG:

Revised Bethesda guidelines

MMR:

Mismatch repair

MLPA:

Multiplex-ligation dependent-probe amplification

FCC-X:

Familial colorectal cancer type-X

HNPCC:

Hereditary nonpolyposis colon cancer

FAP:

Familial adenomatous polyposis

MMR-deficient or-proficient FCC:

Mismatch repair deficient or proficient, familial colorectal cancer

References

  1. Lynch HT, Lynch PM, Lanspa SJ et al (2009) Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet 76:1–18

    Article  PubMed  CAS  Google Scholar 

  2. Marra G, Jiricny J (2005) DNA mismatch repair and colon cancer. In: Nigg E (ed) Genome instability in cancer development (advances in experimental medicine and biology). Springer, Netherlands, pp 85–123

    Chapter  Google Scholar 

  3. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  4. Boland CR, Thibodeau SN, Hamilton SR et al (1998) A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    PubMed  CAS  Google Scholar 

  5. Plasilova M, Zhang J, Okhowat R et al (2006) A de novo MLH1 germ line mutation in a 31-year-old colorectal cancer patient. Genes Chromosom Cancer 45:1106–1110

    Article  PubMed  CAS  Google Scholar 

  6. Truninger K, Menigatti M, Luz J et al (2005) Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer. Gastroenterology 128:1160–1171

    Article  PubMed  CAS  Google Scholar 

  7. Marra G, Schär P (1999) Recognition of DNA alterations by the mismatch repair system. Biochem J 338(Pt 1):1–13

    Article  PubMed  CAS  Google Scholar 

  8. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  PubMed  CAS  Google Scholar 

  9. Kroonenberg PM, Lombardo R (1999) Nonsymmetric correspondence analysis: a tool for analysing contingency tables with a dependence structure. Multivar Behav Res 34:367–396

    Article  Google Scholar 

  10. ter Braak C (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  11. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  12. Lindor NM, Rabe K, Petersen GM et al (2005) Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA 293:1979–1985

    Article  PubMed  CAS  Google Scholar 

  13. Abdel-Rahman WM, Peltomaki P (2008) Lynch syndrome and related familial colorectal cancers. Crit Rev Oncog 14:1–22 discussion 23–31

    PubMed  Google Scholar 

  14. Woods MO, Williams P, Careen A et al (2007) A new variant database for mismatch repair genes associated with Lynch syndrome. Hum Mutat 28:669–673

    Article  PubMed  CAS  Google Scholar 

  15. Fokkema IFAC, den Dunnen JT, Taschner PEM (2005) LOVD: easy creation of a locus-specific sequence variation database using an “LSDB-in-a-Box” approach. Hum Mutat 26:63–68

    Article  PubMed  CAS  Google Scholar 

  16. Hampel H, Stephens JA, Pukkala E et al (2005) Cancer risk in hereditary nonpolyposis colorectal cancer syndrome: later age of onset. Gastroenterology 129:415–421

    PubMed  Google Scholar 

  17. Jasperson KW, Tuohy TM, Neklason DW et al (2010) Hereditary and familial colon cancer. Gastroenterology 138:2044–2058

    Article  PubMed  CAS  Google Scholar 

  18. Wijnen JT, Vasen HF, Khan PM et al (1998) Clinical findings with implications for genetic testing in families with clustering of colorectal cancer. N Engl J Med 339:511–518

    Article  PubMed  CAS  Google Scholar 

  19. Genuardi M, Anti M, Capozzi E et al (1998) MLH1 and MSH2 constitutional mutations in colorectal cancer families not meeting the standard criteria for hereditary nonpolyposis colorectal cancer. Int J Cancer 75:835–839

    Article  PubMed  CAS  Google Scholar 

  20. Benatti P, Roncucci L, Ganazzi D et al (2001) Clinical and biologic heterogeneity of hereditary nonpolyposis colorectal cancer. Int J Cancer 95:323–328

    Article  PubMed  CAS  Google Scholar 

  21. Bisgaard ML, Jager AC, Myrhoj T et al (2002) Hereditary non-polyposis colorectal cancer (HNPCC): phenotype-genotype correlation between patients with and without identified mutation. Hum Mutat 20:20–27

    Article  PubMed  CAS  Google Scholar 

  22. Renkonen E, Zhang Y, Lohi H et al (2003) Altered expression of MLH1, MSH2, and MSH6 in predisposition to hereditary nonpolyposis colorectal cancer. J Clin Oncol 21:3629–3637

    Article  PubMed  CAS  Google Scholar 

  23. Llor X, Pons E, Xicola RM et al (2005) Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin Cancer Res 11:7304–7310

    Article  PubMed  CAS  Google Scholar 

  24. Mueller-Koch Y, Vogelsang H, Kopp R et al (2005) Hereditary non-polyposis colorectal cancer: clinical and molecular evidence for a new entity of hereditary colorectal cancer. Gut 54:1733–1740

    Article  PubMed  CAS  Google Scholar 

  25. Valle L, Perea J, Carbonell P et al (2007) Clinicopathologic and pedigree differences in amsterdam I-positive hereditary nonpolyposis colorectal cancer families according to tumor microsatellite instability status. J Clin Oncol 25:781–786

    Article  PubMed  CAS  Google Scholar 

  26. Terdiman JP, Gum JR Jr, Conrad PG et al (2001) Efficient detection of hereditary nonpolyposis colorectal cancer gene carriers by screening for tumor microsatellite instability before germline genetic testing. Gastroenterology 120:21–30

    Article  PubMed  CAS  Google Scholar 

  27. Scott RJ, McPhillips M, Meldrum CJ et al (2001) Hereditary nonpolyposis colorectal cancer in 95 families: differences and similarities between mutation-positive and mutation-negative kindreds. Am J Hum Genet 68:118–127

    Article  PubMed  CAS  Google Scholar 

  28. Jass JR, Cottier DS, Jeevaratnam P et al (1995) Diagnostic use of microsatellite instability in hereditary non-polyposis colorectal cancer. Lancet 346:1200–1201

    Article  PubMed  CAS  Google Scholar 

  29. Vasen HF, Mecklin JP, Khan PM et al (1991) The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis Colon Rectum 34:424–425

    Article  PubMed  CAS  Google Scholar 

  30. Marra G, Boland CR (1995) Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J Natl Cancer Inst 87:1114–1125

    Article  PubMed  CAS  Google Scholar 

  31. Marra G, Jiricny J (2003) Multiple colorectal adenomas: is their number up? N Engl J Med 348:845–847

    Article  PubMed  Google Scholar 

  32. Trautmann K, Terdiman JP, French AJ et al (2006) Chromosomal instability in microsatellite-unstable and stable colon cancer. Clin Cancer Res 12:6379–6385

    Article  PubMed  CAS  Google Scholar 

  33. di Pietro M, Sabates Bellver J, Menigatti M et al (2005) Defective DNA mismatch repair determines a characteristic transcriptional profile in proximal colon cancers. Gastroenterology 129:1047–1059

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the patients and their families for taking part in this long-term study; Marianne Haeusler, Michele Attenhofer, and Sibylle Bertschin for technical assistance; and Marian Everett Kent for editorial assistance. The study was supported by Swiss National Science Foundation grant no. 31003A-122186 (to Giancarlo Marra, Endre Laczko, and Ritva Haider) and funds from the SNF TANDEM program (to Josef Jiricny and Hansjakob Mueller), Oncosuisse Switzerland (to Karl Heinimann and Michal Kovac), the Krebsliga beider Basel (to Karl Heinimann), and the Krebsliga Zentralschweiz (to Karl Heinimann).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karl Heinimann or Giancarlo Marra.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovac, M., Laczko, E., Haider, R. et al. Familial colorectal cancer: eleven years of data from a registry program in Switzerland. Familial Cancer 10, 605–616 (2011). https://doi.org/10.1007/s10689-011-9458-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-011-9458-6

Keywords

Navigation