Advertisement

Familial Cancer

, 10:557 | Cite as

Dendritic cell and macrophage infiltration in microsatellite-unstable and microsatellite-stable colorectal cancer

  • Kathrin Bauer
  • Sara Michel
  • Miriam Reuschenbach
  • Nina Nelius
  • Magnus von Knebel Doeberitz
  • Matthias Kloor
Article

Abstract

High level microsatellite instability (MSI-H) is a hallmark of Lynch syndrome-associated colorectal cancer (CRC). MSI-H CRC express immunogenic tumour antigens as a consequence of DNA mismatch repair deficiency-induced frameshift mutations. Consequently, frameshift antigen-specific immune responses are commonly observed in patients with Lynch syndrome-associated MSI-H CRC. Dendritic cells (DC) and macrophages play a crucial role in the induction and modulation of immune responses. We here analysed DC and macrophage infiltration in MSI-H and microsatellite-stable CRC. Sixty-nine CRC (MSI-H, n = 33; microsatellite-stable, n = 36) were examined for the density of tumour-infiltrating DC, Foxp3-positive regulatory T cells, and CD163-positive macrophages. In MSI-H lesions, S100-positive and CD163-positive cell counts were significantly higher compared to microsatellite-stable lesions (S100: epithelium P = 0.018, stroma P = 0.042; CD163: epithelium P < 0.001, stroma P = 0.046). Additionally, numbers of CD208-positive mature DC were significantly elevated in the epithelial compartment of MSI-H CRC (P = 0.027). High numbers of tumour-infiltrating Foxp3-positive T cells were detected in tumours showing a low proportion of CD208-positive, mature DC among the total number of S100-positive cells. Our study demonstrates that infiltration with DC, mature DC, and macrophages is elevated in MSI-H compared to microsatellite-stable CRC. The positive correlation of Foxp3-positive Treg cell density with a low proportion of mature DC suggests that impaired DC maturation may contribute to local immune evasion in CRC. Our results demonstrate that DC and macrophages in the tumour environment likely play an important role in the induction of antigen-specific immune responses in Lynch syndrome. Moreover, impaired DC maturation might contribute to local immune evasion in CRC.

Keywords

Colorectal cancer Dendritic cells Immune response Lynch syndrome Macrophages Microsatellite instability Regulatory T cells 

Abbreviations

CRC

Colorectal cancer

DC

Dendritic cells

MSI-H

High-level microsatellite instability

MSS

Microsatellite-stable

Treg cells

Regulatory T cells

Notes

Acknowledgments

The excellent technical assistance of Beate Kuchenbuch and Carina Konrad is gratefully acknowledged. The study was funded in part by the Deutsche Krebshilfe (German Cancer Aid).

Conflict of interest statement

The authors declare that they have no conflict of interests.

References

  1. 1.
    Ionov Y, Peinado MA, Malkhosyan S et al (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561PubMedCrossRefGoogle Scholar
  2. 2.
    Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819PubMedCrossRefGoogle Scholar
  3. 3.
    Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348:919–932PubMedCrossRefGoogle Scholar
  4. 4.
    Linnebacher M, Gebert J, Rudy W et al (2001) Frameshift peptide-derived T-cell epitopes: a source of novel tumour-specific antigens. Int J Cancer 93:6–11PubMedCrossRefGoogle Scholar
  5. 5.
    Saeterdal I, Bjorheim J, Lislerud K et al (2001) Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci USA 98:13255–13260PubMedCrossRefGoogle Scholar
  6. 6.
    Schwitalle Y, Kloor M, Eiermann S et al (2008) Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology 134:988–997PubMedCrossRefGoogle Scholar
  7. 7.
    Reuschenbach M, Kloor M, Morak M et al (2010) Serum antibodies against frameshift peptides in microsatellite unstable colorectal cancer patients with Lynch syndrome. Fam Cancer 9(2):173–179PubMedCrossRefGoogle Scholar
  8. 8.
    Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23:609–618PubMedCrossRefGoogle Scholar
  9. 9.
    Buckowitz A, Knaebel HP, Benner A et al (2005) Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases. Br J Cancer 92:1746–1753PubMedCrossRefGoogle Scholar
  10. 10.
    Kloor M, Michel S, von Knebel Doeberitz M (2010) Immune evasion of microsatellite unstable colorectal cancers. Int J Cancer 127:1001–1010PubMedCrossRefGoogle Scholar
  11. 11.
    Smyrk TC, Watson P, Kaul K et al (2001) Tumour-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 91:2417–2422PubMedCrossRefGoogle Scholar
  12. 12.
    Jenkins MA, Hayashi S, O’Shea AM et al (2007) Pathology features in Bethesda guidelines predict colorectal cancer microsatellite instability: a population-based study. Gastroenterology 133:48–56PubMedCrossRefGoogle Scholar
  13. 13.
    Dolcetti R, Viel A, Doglioni C et al (1999) High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol 154:1805–1813PubMedCrossRefGoogle Scholar
  14. 14.
    Phillips SM, Banerjea A, Feakins R et al (2004) Tumour-infiltrating lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic. Br J Surg 91:469–475PubMedCrossRefGoogle Scholar
  15. 15.
    Michel S, Benner A, Tariverdian M et al (2008) High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability. Br J Cancer 99:1867–1873PubMedCrossRefGoogle Scholar
  16. 16.
    Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811PubMedCrossRefGoogle Scholar
  17. 17.
    Rutella S, Lemoli RM (2004) Regulatory T cells and tolerogenic dendritic cells: from basic biology to clinical applications. Immunol Lett 94(1–2):11–26PubMedCrossRefGoogle Scholar
  18. 18.
    Mantovani A, Sica A, Allavena P et al (2009) Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 70:325–330PubMedCrossRefGoogle Scholar
  19. 19.
    Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483PubMedCrossRefGoogle Scholar
  20. 20.
    Högger P, Dreier J, Droste A et al (1998) Identification of the integral membrane protein RM3/1 on human monocytes as a glucocorticoid-inducible member of the scavenger receptor cysteine-rich family (CD163). J Immunol 161(4):1883–1890PubMedGoogle Scholar
  21. 21.
    Boland CR, Thibodeau SN, Hamilton SR et al (1998) A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58(22):5248–5257PubMedGoogle Scholar
  22. 22.
    Findeisen P, Kloor M, Merx S et al (2005) T25 repeat in the 3′ untranslated region of the CASP2 gene: a sensitive and specific marker for microsatellite instability in colorectal cancer. Cancer Res 65:8072–8078PubMedCrossRefGoogle Scholar
  23. 23.
    Hart DN (1997) Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90:3245–3287PubMedGoogle Scholar
  24. 24.
    Nagorsen D, Thiel E (2006) Clinical and immunologic responses to active specific cancer vaccines in human colorectal cancer. Clin Cancer Res 12:3064–3069PubMedCrossRefGoogle Scholar
  25. 25.
    Flavell RA, Sanjabi S, Wrzesinski SH et al (2010) The polarization of immune cells in the tumour environment by TGFβ. Nat Rev Immunol 10:554–567PubMedCrossRefGoogle Scholar
  26. 26.
    Nagorsen D, Voigt S, Berg E et al (2007) Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumour-associated antigens and survival. J Transl Med 5:62PubMedCrossRefGoogle Scholar
  27. 27.
    Vanstapel M-J, Gatter KC, de Wolf-Peeters C et al (1986) New sites of human S-100 immunoreactivity detected with monoclonal antibodies. Am J Clin Pathol 85:160–168PubMedGoogle Scholar
  28. 28.
    Li ZH, Dulyaninova NG, House RP et al. (2010) S100A4 regulates macrophage chemotaxis. E Mol Biol Cell 21:2598–2610Google Scholar
  29. 29.
    Dadabayev AR, Sandel MH, Menon AG et al (2004) Dendritic cells in colorectal cancer correlate with other tumour-infiltrating immune cells. Cancer Immunol Immunother 53:978–986PubMedCrossRefGoogle Scholar
  30. 30.
    Sandel MH, Dadabayev AR, Menon AG et al (2005) Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res 11:2576–2582PubMedCrossRefGoogle Scholar
  31. 31.
    Saint-Vis B, Vincent J, Vandenabeele S et al (1998) A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity 9:325–336PubMedCrossRefGoogle Scholar
  32. 32.
    Cui G, Yuan A, Goll R et al (2007) Distinct changes of dendritic cell number and IL-12 mRNA level in adjacent mucosa throughout the colorectal adenoma-carcinoma sequence. Cancer Immunol Immunother 56:1993–2001PubMedCrossRefGoogle Scholar
  33. 33.
    Della Porta M, Danova M, Rigolin GM et al (2005) Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings. Oncology 68:276–284PubMedCrossRefGoogle Scholar
  34. 34.
    Liu J, Lu G, Li Z et al (2010) Distinct compartmental distribution of mature and immature dendritic cells in esophageal squamous cell carcinoma. Pathol Res Pract 206(9):602–606PubMedCrossRefGoogle Scholar
  35. 35.
    Kushwah R, Wu J, Oliver JR et al (2010) Uptake of apoptotic DC converts immature DC into tolerogenic DC that induce differentiation of Foxp3+ Treg. Eur J Immunol 40:1022–1035PubMedCrossRefGoogle Scholar
  36. 36.
    Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23(9):445–449PubMedCrossRefGoogle Scholar
  37. 37.
    Groux H, Fournier N, Cottrez F (2004) Role of dendritic cells in the generation of regulatory T cells. Semin Immunol 16:99–106PubMedCrossRefGoogle Scholar
  38. 38.
    Smits HH, de Jong EC, Wierenga EA et al (2005) Different faces of regulatory DCs in homeostasis and immunity. Trends Immunol 26:123–129PubMedCrossRefGoogle Scholar
  39. 39.
    Yoshimura A, Wakabayashi Y, Mori T (2010) Cellular and molecular basis for the regulation of inflammation by TGF-{beta}. J Biochem 147(6):781–792PubMedCrossRefGoogle Scholar
  40. 40.
    Feuerer M, Hill JA, Mathis D, Benoist C (2009) Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol 10(7):689–695PubMedCrossRefGoogle Scholar
  41. 41.
    Loddenkemper C, Schernus M, Noutsias M et al (2006) In situ analysis of FOXP3+ regulatory T cells in human colorectal cancer. J Transl Med 4:52PubMedCrossRefGoogle Scholar
  42. 42.
    Suzuki H, Chikazawa N, Tasaka T et al (2010) Intratumoral CD8(+) T/FOXP3(+) cell ratio is a predictive marker for survival in patients with colorectal cancer. Cancer Immunol Immunother 59:653–661PubMedCrossRefGoogle Scholar
  43. 43.
    Savage ND, de Boer T, Walburg KV et al (2008) Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J Immunol 181:2220–2226PubMedGoogle Scholar
  44. 44.
    Ambe K, Mori M, Enjoji M (1989) S-100 protein-positive dendritic cells in colorectal adenocarcinomas. Distribution and relation to the clinical prognosis. Cancer 63(3):496–503PubMedCrossRefGoogle Scholar
  45. 45.
    Chang KC, Huang GC, Jones D et al (2007) Distribution patterns of dendritic cells and T cells in diffuse large B-cell lymphomas correlate with prognoses. Clin Cancer Res 13:6666–6672PubMedCrossRefGoogle Scholar
  46. 46.
    Furihata M, Ohtsuki Y, Ido E et al (1992) HLA-DR antigen- and S-100 protein-positive dendritic cells in esophageal squamous cell carcinoma–their distribution in relation to prognosis. Virchows Arch B Cell Pathol Incl Mol Pathol 61:409–414PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kathrin Bauer
    • 1
    • 2
  • Sara Michel
    • 1
    • 2
  • Miriam Reuschenbach
    • 1
    • 2
  • Nina Nelius
    • 1
    • 2
  • Magnus von Knebel Doeberitz
    • 1
    • 2
  • Matthias Kloor
    • 1
    • 2
  1. 1.Department of Applied Tumour Biology, Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
  2. 2.Collaboration Unit Applied Tumour BiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations