Familial Cancer

, Volume 10, Issue 3, pp 447–453 | Cite as

The role of LKB1 in lung cancer

  • Montse Sanchez-Cespedes


In humans, the LKB1 gene is located on the short arm of chromosome 19, which is frequently deleted in lung tumors. Unlike most cancers of sporadic origin, in non-small cell lung cancer (NSCLC) nearly half of the tumors harbor somatic and homozygous inactivating mutations in LKB1. In NSCLC, LKB1 inactivation strongly predominates in adenocarcinomas from smokers and coexists with mutations at other important cancer genes, including KRAS and TP53. Remarkably, LKB1 alterations frequently occur simultaneously with inactivation at another important tumor suppressor gene, BRG1 (also called SMARCA4), which is also located on chromosome 19p. The present review considers the frequency and pattern of LKB1 mutations in lung cancer and the distinct biological pathways in which the LKB1 protein is involved in the development of this type of cancer. Finally, the possible clinical applications in cancer management, especially in lung cancer treatment, associated with the presence of absence of LKB1 are discussed.


Lung cancer LKB1 (or STK11Peutz-Jeghers BRG1 SMARCA4 


  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisan P (2001) Estimating the world cancer burden: globocan 2000. Int J Cancer 94:153–156PubMedCrossRefGoogle Scholar
  2. 2.
    Slebos RJC, Hruban RH, Dalesio O et al (1991) Relationship between K-ras oncogene activation and smoking in adenocarcinomas of the human lung. J Natl Cancer Inst 83:1024–1027PubMedCrossRefGoogle Scholar
  3. 3.
    Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878PubMedGoogle Scholar
  4. 4.
    Travis WD, Brambilla E, Müller-Hermelink HK, Harris CC (eds) (2004) World Health Organization classification of tumours. Pathology and genetics of tumours of the lung, pleura, thymus and heart. IARC Press, LyonGoogle Scholar
  5. 5.
    Bhattacharjee A, Richards WG, Staunton J et al (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 98:13790–13795PubMedCrossRefGoogle Scholar
  6. 6.
    Garber ME, Troyanskaya OG, Schluens K et al (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 98:13784–13789PubMedCrossRefGoogle Scholar
  7. 7.
    Angulo B, Suarez-Gauthier A, Lopez-Rios F et al (2008) Expression signatures in lung cancer shows a profile for EGFR-mutant tumors and identifies selective PIK3CA overexpression by gene amplification. J Pathol 214:347–356PubMedCrossRefGoogle Scholar
  8. 8.
    Sanchez-Cespedes M (2003) Dissecting the genetic alterations involved in lung carcinogenesis. Lung Cancer 40:111–121PubMedCrossRefGoogle Scholar
  9. 9.
    Ding L, Getz G, Wheeler DA et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075PubMedCrossRefGoogle Scholar
  10. 10.
    Blanco R, Iwakawa R, Tang M et al (2009) A gene-alteration profile of human lung cancer cell lines. Hum Mutat 30:1199–1206PubMedCrossRefGoogle Scholar
  11. 11.
    Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 20:2129–2139CrossRefGoogle Scholar
  12. 12.
    Pao W, Miller V, Zakowski M et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101:13306–13311PubMedCrossRefGoogle Scholar
  13. 13.
    Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500PubMedCrossRefGoogle Scholar
  14. 14.
    Hemminki A, Markie D, Tomlinson I et al (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 18:184–187Google Scholar
  15. 15.
    Jenne DE, Reimann H, Nezu J et al (1998) Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18:38–44PubMedCrossRefGoogle Scholar
  16. 16.
    Giardiello FM, Welsh SB, Hamilton SR et al (1987) Increased risk of cancer in the Peutz-Jeghers syndrome. N Engl J Med 316:1511–1514PubMedCrossRefGoogle Scholar
  17. 17.
    van Lier MG, Wagner A, Mathus-Vliegen EM et al (2010) High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol 105:1258–1264PubMedCrossRefGoogle Scholar
  18. 18.
    Virmani AK, Fong KM, Kodagoda D et al (1998) Allelotyping demonstrates common and distinct patterns of chromosomal loss in human lung cancer types. Genes Chrom Cancer 21:308–319PubMedCrossRefGoogle Scholar
  19. 19.
    Sanchez-Cespedes M, Parrella P, Esteller M et al (2002) Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62:3659–3662PubMedGoogle Scholar
  20. 20.
    Carretero J, Medina PP, Pio R et al (2004) Novel and natural knockout lung cancer cell lines for the LKB1/STK11 tumor suppressor gene. Oncogene 23:4037–4040PubMedCrossRefGoogle Scholar
  21. 21.
    Sanchez-Cespedes M (2007) A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 26:7825–7832PubMedCrossRefGoogle Scholar
  22. 22.
    Ji H, Ramsey MR, Hayes DN et al (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448:807–810PubMedCrossRefGoogle Scholar
  23. 23.
    Matsumoto S, Iwakawa R, Takahashi K et al (2007) Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 26:5911–5918PubMedCrossRefGoogle Scholar
  24. 24.
    Mahoney CL, Choudhury B, Davies H et al (2009) LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition. Br J Cancer 100:370–375PubMedCrossRefGoogle Scholar
  25. 25.
    Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823PubMedCrossRefGoogle Scholar
  26. 26.
    Ghaffar H, Sahin F, Sanchez-Cespedes M et al (2003) LKB1 protein expression in the evolution of glandular neoplasia of the lung. Clin Cancer Res 9:2998–3003PubMedGoogle Scholar
  27. 27.
    Conde E, Suarez-Gauthier A, Garcia-Garcia E et al (2007) Specific pattern of LKB1 and phospho-acetyl-CoA carboxylase protein immunostaining in human normal tissues and lung carcinomas. Hum Pathol 38:1351–1360PubMedCrossRefGoogle Scholar
  28. 28.
    Mehenni H, Gehrig C, Nezu J et al (1998) Loss of LKB1 kinase activity in Peutz-Jeghers syndrome, and evidence for allelic and locus heterogeneity. Am J Hum Genet 63:1641–1650PubMedCrossRefGoogle Scholar
  29. 29.
    Ylikorkala A, Avizienyte E, Tomlinson IP et al (1999) Mutations and impaired function of LKB1 in familial and non-familial Peutz-Jeghers syndrome and a sporadic testicular cancer. Hum Mol Genet 8:45–51PubMedCrossRefGoogle Scholar
  30. 30.
    Hawley SA, Boudeau J, Reid JL et al (2003) Complexes between the LKB1 tumor suppressor, STRADalpha/beta and MO25alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2:28PubMedCrossRefGoogle Scholar
  31. 31.
    Wong AK, Shanahan F, Chen Y et al (2000) BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res 60:6171–6177PubMedGoogle Scholar
  32. 32.
    Medina PP, Romero OA, Kohno T et al (2008) Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat 29:617–622PubMedCrossRefGoogle Scholar
  33. 33.
    Rodriguez-Nieto S, Sanchez-Cespedes M (2009) BRG1 and LKB1: tales of two tumor suppressor genes on chromosome 19p and lung cancer. Carcinogenesis 30:547–554PubMedCrossRefGoogle Scholar
  34. 34.
    Tiainen M, Ylikorkala A, Makela TP (1999) Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci USA 96:9248–9251PubMedCrossRefGoogle Scholar
  35. 35.
    Marignani P, Kanai F, Carpenter CL (2001) LKB1 associates with Brg1 and is necessary for Brg1-induced growth arrest. J Biol Chem 276:32415–32418PubMedCrossRefGoogle Scholar
  36. 36.
    Jimenez AI, Fernandez P, Dominguez O et al (2003) Growth and molecular profile of lung cancer cells expressing ectopic LKB1: down-regulation of the phosphatidylinositol 3’-phosphate kinase/PTEN pathway. Cancer Res 63:1382–1388PubMedGoogle Scholar
  37. 37.
    Karuman P, Gozani O, Odze RD et al (2001) The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell 7:1307–1319PubMedCrossRefGoogle Scholar
  38. 38.
    Nakau M, Miyoshi H, Seldin MF et al (2002) Hepatocellular carcinoma caused by loss of heterozygosity in lkb1 gene knockout mice. Cancer Res 62:4549–4553PubMedGoogle Scholar
  39. 39.
    Miyoshi H, Nakau M, Ishikawa TO et al (2002) Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res 62:2261–2266PubMedGoogle Scholar
  40. 40.
    Ylikorkala A, Rossi DJ, Korsisaari N et al (2001) Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science 293:1323–1326PubMedCrossRefGoogle Scholar
  41. 41.
    Baas AF, Boudeau J, Sapkota GP et al (2003) Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 22:3062–3072PubMedCrossRefGoogle Scholar
  42. 42.
    Boudeau J, Baas AF, Deak M et al (2003) MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J 22:5102–5114PubMedCrossRefGoogle Scholar
  43. 43.
    Hardie DG (2003) Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144:5179–5183PubMedCrossRefGoogle Scholar
  44. 44.
    Corradetti MN, Inoki K, Bardeesy N et al (2004) Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18:1533–1538PubMedCrossRefGoogle Scholar
  45. 45.
    Shaw RJ, Bardeesy N, Manning BD et al (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6:91–99PubMedCrossRefGoogle Scholar
  46. 46.
    Carretero J, Medina PP, Blanco R et al (2007) Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene 26:1616–1625PubMedCrossRefGoogle Scholar
  47. 47.
    Fernandez P, Carretero J, Medina PP et al (2004) Distinctive gene expression of human lung adenocarcinomas carrying LKB1 gene mutations. Oncogene 23:5084–5091PubMedCrossRefGoogle Scholar
  48. 48.
    Lizcano JM, Goransson O, Toth R et al (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23:833–843PubMedCrossRefGoogle Scholar
  49. 49.
    Guo S, Kemphues KJ (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611–620PubMedCrossRefGoogle Scholar
  50. 50.
    Martin SG, St Johnston D (2003) A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature 421:379–384PubMedCrossRefGoogle Scholar
  51. 51.
    Baas AF, Kuipers J, van der Wel NN et al (2004) Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116:457–466PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang S, Schafer-Hales K, Khuri FR et al (2008) The tumor suppressor LKB1 regulates lung cancer cell polarity by mediating cdc42 recruitment and activity. Cancer Res 68:740–748PubMedCrossRefGoogle Scholar
  53. 53.
    Roy BC, Kohno T, Iwakawa R et al (2010) Involvement of LKB1 in epithelial-mesenchymal transition (EMT) of human lung cancer cells. Lung Cancer. doi: 10.1016/j.lungcan.2010.02.004
  54. 54.
    Carretero J, Shimamura T, Rikova K et al (2010) Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors. Cancer Cell 17(5):47–59Google Scholar
  55. 55.
    Komiya T, Coxon A, Park Y et al (2010) Enhanced activity of the CREB co-activator Crtc1 in LKB1 null lung cancer. Oncogene 29:1672–1680PubMedCrossRefGoogle Scholar
  56. 56.
    Evans JM, Donnelly LA, Emslie-Smith AM et al (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330:1304–1305PubMedCrossRefGoogle Scholar
  57. 57.
    Elstrom RL, Bauer DE, Buzzai M et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899PubMedCrossRefGoogle Scholar
  58. 58.
    Buzzai M, Bauer DE, Jones RG et al (2005) The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24:4165–4173PubMedCrossRefGoogle Scholar
  59. 59.
    Memmott RM, Gills JJ, Hollingshead M et al (2008) Phosphatidylinositol ether lipid analogues induce AMP-activated protein kinase-dependent death in LKB1-mutant non small cell lung cancer cells. Cancer Res 68:580–588PubMedCrossRefGoogle Scholar
  60. 60.
    Conde E, Angulo B, Tang M et al (2006) Molecular context of the EGFR mutations: evidence for the activation of mTOR/S6 K signaling. Clin Cancer Res 12:710–717PubMedCrossRefGoogle Scholar
  61. 61.
    Gandhi L, McNamara KL, Li D et al (2009) Sunitinib prolongs survival in genetically engineered mouse models of multistep lung carcinogenesis. Cancer Prev Res 2:330–337CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Programa Epigenetica i Biologia del Cancer-PEBCInstitut Investigacions Biomediques Bellvitge (IDIBELL), Hospital Duran i ReynalsHospitalet de Llobregat-BarcelonaSpain

Personalised recommendations