Familial Cancer

, Volume 10, Issue 2, pp 337–342 | Cite as

Heterogeneity of familial medulloblastoma and contribution of germline PTCH1 and SUFU mutations to sporadic medulloblastoma

  • Ingrid Slade
  • Anne Murray
  • Sandra Hanks
  • Ajith Kumar
  • Lisa Walker
  • Darren Hargrave
  • Jenny Douglas
  • Charles Stiller
  • Louise Izatt
  • Nazneen Rahman


PTCH1 and SUFU are both regulators of the sonic hedgehog signalling pathway. Germline inactivating mutations in both genes are associated with multisystem phenotypes including medulloblastoma. Somatic inactivating mutations in PTCH1 and SUFU each occur in approximately 10% of medulloblastomas. Recently, SUFU mutations were reported in familial medulloblastoma pedigrees without additional phenotypic features. We sought to further investigate the contribution of germline PTCH1 and SUFU mutations to familial and sporadic medulloblastoma. We performed full-gene mutational analysis of both PTCH1 and SUFU in three familial medulloblastoma pedigrees and 83 individuals with sporadic non-familial medulloblastoma. We identified no mutations in PTCH1 or SUFU in the three familial medulloblastoma pedigrees. We identified no PTCH1 mutations and two SUFU mutations that cause premature protein truncating in the series of sporadic non-familial medulloblastomas. The SUFU mutations were identified in two of the 16 individuals with desmoplastic medulloblastomas. These data indicate that familial medulloblastoma is a genetically heterogeneous disorder with at least one further susceptibility gene to be discovered. Furthermore, although both PTCH1 and SUFU play a key role in the sonic hedgehog signalling pathway, PTCH1 does not make an appreciable contribution to non-familial sporadic medulloblastoma, whereas inactivating germline mutations of SUFU cause ~2–3% of sporadic medulloblastomas and > 10% of desmoplastic medulloblastomas.


Familial medulloblastoma Medulloblastoma PTCH1 SUFU Tumor predisposition 



Medulloblastoma with extensive nodularity


Nevoid basal cell carcinoma syndrome


Children’s cancer and leukaemia group


Polymerase chain reaction



We thank the children and families involved in the research and the physicians, nurses and pathologists who referred families and provided samples. We thank Nikki Huxter, Margaret Warren-Perry, Darshna Dudakia, Polly Gibbs, Jessie Bull and Anna Zachariou for assistance of recruitment. We thank Bernadette Ebbs and Deborah Hughes for running the ABI sequencers. The research was carried out as part of the Factors Associated with Childhood Tumors (FACT) study, which is a UK Children’s Cancer and Leukaemia Group (CCLG) study. The Childhood Cancer Research Group receives funding from the Department of Health and the Scottish Ministers. The views expressed in this publication are those of the authors and not necessarily those of the Department of Health and the Scottish Ministers. I.S. is supported by the Michael and Betty Kadoorie Cancer Genetics Research Programme. We acknowledge NHS funding to the NIHR Biomedical Research Centre. This work was supported by Cancer Research UK (grants C8620_A9024 and C8620_A8857) and the Institute of Cancer Research (UK).

Conflict of interest

None to declare.

Supplementary material

10689_2010_9411_MOESM1_ESM.doc (62 kb)
Supplementary material 1 (DOC 61 kb)


  1. 1.
    Pfister S, Hartmann C, Korshunov A (2009) Histology and molecular pathology of pediatric brain tumors. J Child Neurol 24(11):1375–1386PubMedCrossRefGoogle Scholar
  2. 2.
    Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109PubMedCrossRefGoogle Scholar
  3. 3.
    Rousseau A, Mokhtari K, Duyckaerts C (2008) The 2007 WHO classification of tumors of the central nervous system—what has changed? Curr Opin Neurol 21(6):720–727PubMedCrossRefGoogle Scholar
  4. 4.
    McManamy CS, Pears J, Weston CL et al (2007) Nodule formation and desmoplasia in medulloblastomas-defining the nodular/desmoplastic variant and its biological behavior. Brain Pathol 17(2):151–164PubMedCrossRefGoogle Scholar
  5. 5.
    Cowan R, Hoban P, Kelsey A, Birch JM, Gattamaneni R, Evans DG (1997) The gene for the naevoid basal cell carcinoma syndrome acts as a tumour-suppressor gene in medulloblastoma. Br J Cancer 76(2):141–145PubMedCrossRefGoogle Scholar
  6. 6.
    Amlashi SF, Riffaud L, Brassier G, Morandi X (2003) Nevoid basal cell carcinoma syndrome: relation with desmoplastic medulloblastoma in infancy. A population-based study and review of the literature. Cancer 98(3):618–624PubMedCrossRefGoogle Scholar
  7. 7.
    Zurawel RH, Allen C, Chiappa S et al (2000) Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes Cancer 27(1):44–51PubMedCrossRefGoogle Scholar
  8. 8.
    Taylor MD, Liu L, Raffel C et al (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31(3):306–310PubMedCrossRefGoogle Scholar
  9. 9.
    Pastorino L, Ghiorzo P, Nasti S et al (2009) Identification of a SUFU germline mutation in a family with Gorlin syndrome. Am J Med Genet A 149A(7):1539–1543PubMedCrossRefGoogle Scholar
  10. 10.
    Moschovi M, Sotiris Y, Prodromou N et al (1998) Familial medulloblastoma. Pediatr Hematol Oncol 15(5):421–424PubMedCrossRefGoogle Scholar
  11. 11.
    von Koch CS, Gulati M, Aldape K, Berger MS (2002) Familial medulloblastoma: case report of one family and review of the literature. Neurosurgery 51(1): 227–233 (discussion 33)Google Scholar
  12. 12.
    Brugieres L, Pierron G, Chompret A et al (2010) Incomplete penetrance of the predisposition to medulloblastoma associated with germ-line SUFU mutations. J Med Genet 47(2):142–144PubMedCrossRefGoogle Scholar
  13. 13.
    Pasca di Magliano M, Hebrok M (2003) Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 3(12):903–911PubMedCrossRefGoogle Scholar
  14. 14.
    Toftgard R (2000) Hedgehog signalling in cancer. Cell Mol Life Sci 57(12):1720–1731PubMedCrossRefGoogle Scholar
  15. 15.
    Rubin JB, Rowitch DH (2002) Medulloblastoma: a problem of developmental biology. Cancer Cell 2(1):7–8PubMedCrossRefGoogle Scholar
  16. 16.
    Entz-Werle N, Carli ED, Ducassou S, Legrain M, Grill J, Dufour C (2008) Medulloblastoma: what is the role of molecular genetics? Expert Rev Anticancer Ther 8(7):1169–1181PubMedCrossRefGoogle Scholar
  17. 17.
    Crawford JR, MacDonald TJ, Packer RJ (2007) Medulloblastoma in childhood: new biological advances. Lancet Neurol 6(12):1073–1085PubMedCrossRefGoogle Scholar
  18. 18.
    Ellison D (2002) Classifying the medulloblastoma: insights from morphology and molecular genetics. Neuropathol Appl Neurobiol 28(4):257–282PubMedCrossRefGoogle Scholar
  19. 19.
    Brenner DJ, Quan H (1990) Exact confidence limits for binomial proportions—Pearson and Hartley revisited. Statistician 39:391–397CrossRefGoogle Scholar
  20. 20.
    Kimonis VE, Goldstein AM, Pastakia B et al (1997) Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am J Med Genet 69(3):299–308PubMedCrossRefGoogle Scholar
  21. 21.
    Ng D, Stavrou T, Liu L et al (2005) Retrospective family study of childhood medulloblastoma. Am J Med Genet A 134(4):399–403PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ingrid Slade
    • 1
  • Anne Murray
    • 1
  • Sandra Hanks
    • 1
  • Ajith Kumar
    • 2
  • Lisa Walker
    • 3
  • Darren Hargrave
    • 4
  • Jenny Douglas
    • 1
  • Charles Stiller
    • 5
  • Louise Izatt
    • 6
  • Nazneen Rahman
    • 1
  1. 1.Section of Cancer GeneticsInstitute of Cancer Research and Royal Marsden HospitalSutton, SurreyUK
  2. 2.Department of Clinical GeneticsGreat Ormond Street HospitalLondonUK
  3. 3.Department of Clinical GeneticsChurchill HospitalHeadington, OxfordUK
  4. 4.Section of PaediatricsInstitute of Cancer Research and Royal Marsden HospitalSutton, SurreyUK
  5. 5.Childhood Cancer Research Group, Department of PaediatricsUniversity of OxfordOxfordUK
  6. 6.Department of Clinical GeneticsGuy’s and St Thomas’ HospitalLondonUK

Personalised recommendations