Skip to main content
Log in

Clinical and histomolecular endometrial tumor characterization of patients at-risk for Lynch syndrome in South of Brazil

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Lynch syndrome is an autosomal dominant cancer predisposition syndrome caused by germline mutations in one of the mismatch repair (MMR) genes: MLH1, MSH2, MSH6 and PMS2. Clinically, Lynch syndrome is characterized by early onset (45 years) of colorectal cancer (CRC), as well as extra-colonic cancer. Male and female carriers of Lynch syndrome-associated mutations have different lifetime risks for CRC and in women endometrial cancer (EC) may be the most common tumor. Whenever Amsterdam criteria are not fulfilled, the currently recommended laboratory screening strategies involve microsatellite instability testing and immunohistochemistry staining of the tumor for the major MMR proteins. The aim of this study was to estimate the frequency of MMR deficiencies in women diagnosed with EC who are at-risk for Lynch syndrome. Thirty women diagnosed with EC under the age of 50 years and/or women with EC and a first degree relative diagnosed with a Lynch syndrome-associated tumor were included. To assess MMR deficiencies four methods were used: multiplex PCR, Single Strand Conformation Polymorphism, Immunohistochemistry and Methylation Specific–Multiplex Ligation-dependent Probe Amplification. Twelve (40%) patients with EC fulfilling one of the inclusion criteria had results indicative of MMR deficiency. The identification of 5 women with clear evidence of MMR deficiency and absence of either Amsterdam or Bethesda criteria among 10 diagnosed with EC under the age of 50 years reinforces previous suggestions by some authors that these women should be considered at risk and always screened for Lynch syndrome after informed consent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

DAB:

Diaminobenzidine

DNA:

deoxyribonucleotide acid

EC:

Endometrial cancer

FH:

Familial history

FIPe—HCPA:

Fundação de Incentivo à Pesquisa do Hospital de Clínicas de Porto Alegre

IHC:

Immunohistochemistry

MLH1:

MutL homolog 1

MMR:

Mismatch repair

MSH2:

MutS homolog 2

MSH6:

MutS homolog 6

MS:

Microsatellite stability

MSI:

Microsatellite instability

MS–MLPA:

Methylation specific multiplex ligation-dependent probe amplification

PCR:

Polymerase chain reaction

PMS2:

Postmeiotic segregation increased 2

SSCP:

Single strand conformational polymorphism

Tris–EDTA:

Tris base, ethylenediaminetetracetic acid, disodium salt

UFRGS:

Universidade Federal do Rio Grande do Sul

References

  1. Hadley DW, Jenkins JF, Steinberg SM et al (2008) Perceptions of cancer risks and predictors of colon and endometrial cancer screening in women undergoing genetic testing for Lynch syndrome. J Clin Oncol 26(6):948–954

    Article  PubMed  Google Scholar 

  2. Buttin BM, Powell MA, Mutch DG et al (2004) Increased risk for hereditary nonpolyposis colorectal cancer-associated synchronous and metachronous malignancies in patients with microsatellite instability-positive endometrial carcinoma lacking MLH1 promoter methylation. Clin Cancer Res 10(2):481–490

    Article  CAS  PubMed  Google Scholar 

  3. Black D, Soslow RA, Levine DA et al (2006) Clinicopathologic significance of defective DNA mismatch repair in endometrial carcinoma. J Clin Oncol 24(11):1745–1753

    Article  CAS  PubMed  Google Scholar 

  4. de la Chapelle A (2004) Genetic predisposition to colorectal cancer. Nat Rev Cancer 4(10):769–780

    Article  Google Scholar 

  5. Millar AL, Pal T, Madlensky L et al (1999) Mismatch repair gene defects contribute to the genetic basis of double primary cancers of the colorectum and endometrium. Hum Mol Genet 8(5):823–829

    Article  CAS  PubMed  Google Scholar 

  6. Vasen HF (2005) Clinical description of the Lynch syndrome [hereditary nonpolyposis colorectal cancer (HNPCC)]. Fam Cancer 4(3):219–225

    Article  CAS  PubMed  Google Scholar 

  7. Arnold CN, Goel A, Blum HE et al (2005) Molecular pathogenesis of colorectal cancer: implications for molecular diagnosis. Cancer 104(10):2035–2047

    Article  CAS  PubMed  Google Scholar 

  8. Lu HK, Broaddus RR (2005) Gynecologic cancers in Lynch syndrome/HNPCC. Fam Cancer 4(3):249–254

    Article  PubMed  Google Scholar 

  9. Modica I, Soslow RA, Black D et al (2007) Utility of immunohistochemistry in predicting microsatellite instability in endometrial carcinoma. Am J Surg Pathol 31(5):744–751

    Article  PubMed  Google Scholar 

  10. Lancaster JM, Powell CB, Kauff ND et al (2007) Society of gynecologic oncologists education committee statement on risk assessment for inherited gynecologic cancer predispositions. Gynecol Oncol 107(2):159–162

    Article  PubMed  Google Scholar 

  11. Hewitt MJ, Wood N, Quinton ND et al (2006) The detection of microsatellite instability in blind endometrial samples—a potential novel screening tool for endometrial cancer in women from hereditary nonpolyposis colorectal cancer families? Int J Gynecol Cancer 16(3):1393–1400

    Article  CAS  PubMed  Google Scholar 

  12. Lagerstedt Robinson K, Liu T, Vandrovcova J et al (2007) Lynch syndrome (hereditary nonpolyposis colorectal cancer) diagnostics. J Natl Cancer Inst 99(4):291–299

    Article  PubMed  Google Scholar 

  13. Meyer LA, Broaddus RR, Lu KH (2009) Endometrial cancer and Lynch syndrome: clinical and pathologic considerations. Cancer Control 16(1):14–22

    PubMed  Google Scholar 

  14. Broaddus RR, Lynch HT, Chen LM et al (2006) Pathologic features of endometrial carcinoma associated with HNPCC: a comparison with sporadic endometrial carcinoma. Cancer 106(1):87–94

    Article  CAS  PubMed  Google Scholar 

  15. Matthews KS, Estes JM, Conner MG et al (2008) Lynch syndrome in women less than 50 years of age with endometrial cancer. Obstet Gynecol 111(5):1161–1166

    PubMed  Google Scholar 

  16. Peltomäki P (2005) Lynch syndrome genes. Fam Cancer 4(3):227–232

    Article  PubMed  Google Scholar 

  17. Kariola R, Raevaara TE, Lönnqvist KE et al (2002) Functional analysis of MSH6 mutations linked to kindreds with putative hereditary non-polyposis colorectal cancer syndrome. Hum Mol Genet 11(11):1303–1310

    Article  CAS  PubMed  Google Scholar 

  18. Abdel-Rahman WM, Peltomäki P (2008) Lynch syndrome and related familial colorectal cancers. Crit Rev Oncog 14(1):1–22 (discussion 23–31)

    PubMed  Google Scholar 

  19. Watson P, Riley B (2005) The tumor spectrum in the Lynch syndrome. Fam Cancer 4(3):245–248

    Article  PubMed  Google Scholar 

  20. Oliveira Ferreira F, Napoli Ferreira CC, Rossi BM et al (2004) Frequency of extra-colonic tumors in hereditary nonpolyposis colorectal cancer (HNPCC) and familial colorectal cancer (FCC) Brazilian families: an analysis by a Brazilian hereditary colorectal cancer institutional registry. Fam Cancer 3(1):41–47

    Article  PubMed  Google Scholar 

  21. Geary J, Sasieni P, Houlston R et al (2008) Gene-related cancer spectrum in families with hereditary non-polyposis colorectal cancer (HNPCC). Fam Cancer 7(2):163–172

    Article  CAS  PubMed  Google Scholar 

  22. Berends MJ, Wu Y, Sijmons RH et al (2003) Toward new strategies to select young endometrial cancer patients for mismatch repair gene mutation analysis. J Clin Oncol 21(23):4364–4370

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L (2008) Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part II. The utility of microsatellite instability testing. J Mol Diagn 10(4):301–307

    Article  CAS  PubMed  Google Scholar 

  24. Iacopetta B, Hamelin R (1998) Rapid and nonisotopic SSCP-based analysis of the BAT-26 mononucleotide repeat for identification of the replication error phenotype in human cancers. Hum Mutat 12:355–360

    Article  CAS  PubMed  Google Scholar 

  25. The National Comprehensive Cancer Network, Fort Washington, PA. http://www.nccn.org. Cited 6 Mar 2009

  26. Bonis PA, Trikalinos TA, Chung M, Chew P, Ip S, DeVine DA, Lau J (2007) Hereditary nonpolyposis colorectal cancer: diagnostic strategies and their implications. Evid Rep Technol Assess (Full Rep) (150):1–180

  27. Shia J, Klimstra DS, Nafa K et al (2005) Value of immunohistochemical detection of DNA mismatch repair proteins in predicting germline mutation in hereditary colorectal neoplasms. Am J Surg Pathol 29(1):96–104

    Article  PubMed  Google Scholar 

  28. Shia J (2008) Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn 10(4):293–300

    Article  PubMed  Google Scholar 

  29. Halvarsson B, Lindblom A, Rambech E et al (2004) Microsatellite instability analysis and/or immunostaining for the diagnosis of hereditary nonpolyposis colorectal cancer? Virchows Arch 444(2):135–141

    Article  CAS  PubMed  Google Scholar 

  30. MRC-Holland, Amsterdam, The Netherlands. http://www.mrc-holland.com. Cited 16 Feb 2009

  31. Jeuken JW, Cornelissen SJ, Vriezen M et al (2007) MS–MLPA: an attractive alternative laboratory assay for robust, reliable, and semiquantitative detection of MGMT promoter hypermethylation in gliomas. Lab Invest 87(10):1055–1065

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to the patients and their family members who agreed to participate in this study and to Fundação de Incentivo à Pesquisa do Hospital de Clínicas de Porto Alegre (FIPe-HCPA) and Programa de Pós-Graduação em Ciências Gastroenterológicas (UFRGS) who provided funding for this study. We also thank Drs. Miguel Varela and Gabriel Prolla for patient referrals. We are also indebted to Jan Schouten (MRC-Holland, Amsterdam, The Netherlands) for the technical support with MS–MLPA. We thank Dr Vinicius Duval da Silva and Thiago Giugliani (Laboratório de Patología, Hospital São Lucas, Porto Alegre, Brazil) for their stimulating discussions and technical support in IHC protocols, and Aishameraine Venes Schmidt (UFRGS) for help with the data analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Liliana Cossio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cossio, S.L., Koehler-Santos, P., Pessini, S.A. et al. Clinical and histomolecular endometrial tumor characterization of patients at-risk for Lynch syndrome in South of Brazil. Familial Cancer 9, 131–139 (2010). https://doi.org/10.1007/s10689-009-9297-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-009-9297-x

Keywords

Navigation