Advertisement

Familial Cancer

, Volume 3, Issue 3–4, pp 177–192 | Cite as

Cancer in Jews: introduction and overview

  • Henry T. Lynch
  • Wendy S. Rubinstein
  • Gershon Y. Locker
Article

Abstract

This article is based upon a literature overview of cancer in Jews. It involves a comparison of variation in incidence and prevalence rates between Jews and non-Jews. However, the reader must exercise a certain amount of skepticism when considering secular changes in cancer incidence and prevalence and the public health implications of such cancer variation. Ashkenazi Jews have a lifetime CRC risk of 9--15%. This elevated CRC risk is similar to that of individuals in the "familial risk" category, and differs strikingly from the 5–6% CRC risk for non-Ashkenazi members of general Western populations. A MedLine search tested the hypothesis that site-specific and/or all-cancer incidence and mortality rates are either higher or lower than expected in Ashkenazi Jews worldwide, when compared with reference populations. Results showed that all cancer incidence and mortality is not higher in Ashkenazi Jews when compared to North American non-Hispanic whites. Indeed, rates for some cancers, such as carcinoma of the lung in Ashkenazi males, are low; this example is likely attributable in large part to␣decreased tobacco use. Carcinoma of the ovary, pancreas, stomach, and non-Hodgkin's lymphoma have a higher incidence rate in Ashkenazi. Even though BRCA1 and BRCA2 founder mutations which predispose to carcinoma of the breast and ovary appear increased in Ashkenazi breast cancer affected women, there was no evidence supporting an elevated risk of breast cancer among Ashkenazi women. Our primary concern, however, is that Ashkenazi Jews may have one of the highest lifetime CRC risks of any ethnic group in the world, a risk that diverges significantly from that of the general population; therein, it logically calls for more intensive CRC screening guidelines. We have emphasized that the reader use caution in the interpretation of statistics which portray variation in incidence and prevalence figures for cancer in any racial, ethnic, or religious group, inclusive, of course, of Jews. Clearly, more research will be required in the interest of accuracy in the understanding of these cancer variations, since they portend the need for special cancer control strategies. A lesser degree of attention can then be given to carcinoma of the penis and uterine cervix, which occur very infrequently in Jews. We urge our colleagues to continue to probe further into these statistical differences in cancer's incidence and prevalence in order to garner a better understanding of cancer's etiology and pathogenesis.

Ashkenazi Jews cancer in Jews cancer risk colorectal cancer excess founder mutation genetics hereditary cancer incidence international variation lifestyle factors precancer syndromes secular changes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Minami Y, Tsubono Y, Nishino Y et al.The increase of female breast cancer incidence in Japan:emergence of birth cohort effect.Int J Cancer 2004;108:901-6.PubMedGoogle Scholar
  2. 2.
    Yiu H-Y, Whittemore AS, Shibata A et al.Increasing colo-rectal cancer incidence rates in Japan.Int J Cancer 2004;109: 777-81.PubMedGoogle Scholar
  3. 3.
    Balmain A, Gray J, Ponder B.The genetics and genomics of cancer.Nat Genet 2003;33(Suppl):238-44.PubMedGoogle Scholar
  4. 4.
    Vogelstein B, Kinzler KW (eds).The Genetic Basis of Human Cancer.New York: McGraw-Hill, 1998.Google Scholar
  5. 5.
    Feldman GE.Do Ashkenazi Jews have a higher than expected cancer burden?Implications for cancer control prioritization efforts.Isr Med Assoc J 2001;3:341-6.PubMedGoogle Scholar
  6. 6.
    Lynch HT, Lemon SJ, Marcus JN et al.Breast cancer genetics: heterogeneity, molecular genetics, syndrome diagnosis, and genetic counseling.In Bland KI, Copeland EM, III (eds): The Breast:Comprehensive Management of Benign and Malignant Diseases.Philadelphia: W.B.Saunders Company 1998; 370-94.Google Scholar
  7. 7.
    Mack TM, Berkel J, Bernstein L et al.Religion and cancer in Los Angeles County.J Natl Cancer Inst Monogr 1985;69: 235-45.Google Scholar
  8. 8.
    MacMahon B.The ethnic distribution of cancer mortality in New York City, 1955.Acta Un Int Contra Cancer 1960;16: 1716-24.Google Scholar
  9. 9.
    Greenwald P, Korns RF, Nasca PC et al.Cancer in United States Jews.Cancer Res 1975;35:3507-12.PubMedGoogle Scholar
  10. 10.
    Mack TM, Paganini-Hill A.Epidemiology of pancreas cancer in Los Angeles.Cancer 1981;47:1474-83.PubMedGoogle Scholar
  11. 11.
    Seidman H.Cancer death rates by site and sex for religious and socioeconomic groups in New York City.Environ Res 1970;3: 234-50.PubMedGoogle Scholar
  12. 12.
    King H, Diamond E, Bailar III JC.Cancer mortality and religious preference-a suggested method in research.Milbank Mem Fund Q 1965;43:349-58.PubMedGoogle Scholar
  13. 13.
    Grufferman S, Delzell E.Epidemiology of Hodgkin 's disease. Epidemiol Rev 1984;6:76-106.PubMedGoogle Scholar
  14. 14.
    Preston-Martin S, Menck HR.The epidemiology of thyroid cancer in Los Angeles County.West J Med 1979;131:369-72.PubMedGoogle Scholar
  15. 15.
    Doll R.An epidemiological perspective of the biology of cancer. Cancer Res 1978;38:3573-83.PubMedGoogle Scholar
  16. 16.
    Potter JD.Epidemiology, cancer genetics and microarrays: making correct inferences, using appropriate designs.Trends Genet 2003;19:690-5.PubMedGoogle Scholar
  17. 17.
    Shafritz DA, Shouval D, Sherman HI et al.Integration of hepatitis B virus DNA into the genome of liver cells in chronic liver disease and hepatocellular carcinoma:studies in precutane-ous liver biopsies and post-mortem tissue specimens.N Engl J Med 1981;305:1067-73.PubMedGoogle Scholar
  18. 18.
    Gayther SA, Mangion J, Russell P et al.Variation of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene.Nat Genet 1997;15:103-5.PubMedGoogle Scholar
  19. 19.
    Wagner JE, Tolar J, Levran O et al.Germline mutations in BRCA2:shared genetic susceptibility to breast cancer, early onset leukemia, and Fanconi anemia.Blood 2004;103:3226-9.PubMedGoogle Scholar
  20. 20.
    Jakubowska A, Scott R, Menkiszak J et al.A high frequency of BRCA2 gene mutations in Polish families with ovarian and stomach cancer.Eur J Hum Genet 2003;11:955-8.PubMedGoogle Scholar
  21. 21.
    Modan B, Gak E, Sade-Bruchim RB et al.High frequency of BRCA1 185delAG mutation in ovarian cancer in Israel.JAMA 1996;276:1823-5.PubMedGoogle Scholar
  22. 22.
    Haenszel W.Cancer mortality among U.S.Jews.Isr J Med Sci 1971;7:1437-50.PubMedGoogle Scholar
  23. 23.
    Parkin DM, Whelan SL, Ferlay J et al.Cancer Incidence in Five Continents.Lyon, France: International Agency for Research on Cancer 1997.Google Scholar
  24. 24.
    Mullineaux LG, Castellano TM, Shaw J et al.Identification of germline 185delAG BRCA1 mutations in non-Jewish Americans of Spanish ancestry from the San Luis Valley, Colorado.Cancer 2003;98:597-602.PubMedGoogle Scholar
  25. 25.
    Long HJ. Identification of germline 185delAG BRCA1 mutations in non-Jewish Americans of Spanish ancestry from the San Luis Valley, Colorado.Cancer 2004;100:434-5.PubMedGoogle Scholar
  26. 26.
    Bar-Sade RB, Kruglikova A, Modan B et al.The 185delAG BRCA1 mutation originated before the dispersion of the Jews in the Diaspora and is not limited to Ashkenazim.Hum Mol Genet 1998;7:801-5.PubMedGoogle Scholar
  27. 27.
    Bar-Sade RB, Theodor L, Gak E et al.Could the 185delAG BRCA1 mutation be an ancient Jewish mutation?Eur J Hum Genet 1997;5:413-6.PubMedGoogle Scholar
  28. 28.
    Dý ´ez O, Osorio A, Robledo M et al.Prevalence of BRCA1 and BRCA2 Jewish mutations in Spanish breast cancer patients.Br J Cancer 1999;79:1302-3.Google Scholar
  29. 29.
    Foulkes WD, Thiffault I, Gruber SB et al.The founder mutation MSH2*1906G->C is an important cause of hereditary non-polyposis colorectal cancer in the Ashkenazi Jewish population. Am J Hum Genet 2002;71:1395-412.PubMedGoogle Scholar
  30. 30.
    Guillem JG, Rapaport BS, Kirchhoff T et al.A636P is associated with early-onset colon cancer in Ashkenazi Jews.J Am Coll Surg 2003;196:222-5.PubMedGoogle Scholar
  31. 31.
    de la Chapelle A, Wright FA.Linkage disequilibrium mapping in isolated populations:the example of Finland revisited.Proc Natl Acad Sci USA 1998;95:12416-23.PubMedGoogle Scholar
  32. 32.
    Wagner A, Barrows A, Wijnen JT et al.Molecular analysis of hereditary non-polyposis colorectal cancer in the United States: high mutation detection rate among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene.Am J Hum Genet 2003;72:1088-100.PubMedGoogle Scholar
  33. 33.
    Lynch HT, Coronel SM, Okimoto R et al.A founder mutation of the MSH2 gene and hereditary non-polyposis colorectal cancer in the United States.JAMA 2004;291:718-24.PubMedGoogle Scholar
  34. 34.
    Jemal A, Thomas A, Murray T et al.Cancer statistics, 2002.CA Cancer J Clin 2002;52:23-47.PubMedGoogle Scholar
  35. 35.
    de la Chapelle A.Microsatellite instability.N Engl J Med 2003; 349:209-10.PubMedGoogle Scholar
  36. 36.
    Lynch HT, de la Chapelle A.Genomic medicine:hereditary colorectal cancer.N Engl J Med 2003;348:919-32.PubMedGoogle Scholar
  37. 37.
    Lynch HT, de la Chapelle A.Genetic susceptibility to non-polyposis colorectal cancer.J Med Genet 1999;36:801-18.PubMedGoogle Scholar
  38. 38.
    Sieber OM, Lipton L, Crabtree M et al.Multiple colorectal adenomas, classic adenomatous polyposis, and germline mutations in MYH.N Engl J Med 2003;348:791-9.PubMedGoogle Scholar
  39. 39.
    Lynch HT, Smyrk T, McGinn T et al.Attenuated familial adenomatous polyposis (AFAP):a phenotypically and genotypically distinctive variant of FAP.Cancer 1995;76:2427-33.PubMedGoogle Scholar
  40. 40.
    Lynch HT, Krush AJ, Guirgis H.Genetic factors in families with combined gastrointestinal and breast cancer.Am J Gastroenterol 1973;59:31-40.PubMedGoogle Scholar
  41. 41.
    Meijers-Heijboer H, Wijnen J, Vasen H et al.The CHEK2 1100delC mutation identi es families with a hereditary breast and colorectal cancer phenotype.Am J Hum Genet 2003;72: 1308-14.PubMedGoogle Scholar
  42. 42.
    Rozen P, Lynch HT, Figer A et al.Familial colon cancer in the Tel-Aviv area and the influence of ethnic origin.Cancer 1987;60: 2355-9.PubMedGoogle Scholar
  43. 43.
    Chen-Shtoyerman R, Theodor L, Harmati E et al.Genetic analysis of familial colorectal cancer in Israeli Arabs.Hum Mutat 20031-8.Google Scholar
  44. 44.
    Hammer MF, Redd AJ, Wood ET et al.Jewish and Middle Eastern non-Jewish populations share a common pool of Y-chromosome biallelic haplotypes.Proc Natl Acad Sci USA 2000; 97:6769-74.PubMedGoogle Scholar
  45. 45.
    Lynch HT.Cancer Genetics.Spring field, Illinois: CC Thomas 1976.Google Scholar
  46. 46.
    Lipkin M, Blattner WE, Fraumeni Jr JF et al.Tritiated thymidine (phi p, phi h)labeling distribution as a marker for hereditary predisposition to colon cancer.Cancer Res 1983;43:1899-904.PubMedGoogle Scholar
  47. 47.
    Kopelovich L, Conlon S, Pollack R.Defective organization of actin in cultured skin broblasts from patients with inherited adenocarcinoma.Proc Natl Acad Sci USA 1979;74:2019-22.Google Scholar
  48. 48.
    Kopelovich L.Genetic predisposition to cancer in man:in vitro studies.Int Rev Cytol 1982;77:63-88.PubMedGoogle Scholar
  49. 49.
    Lynch HT, Kimberling W, Albano WA et al.Hereditary non-polyposis colorectal cancer (Lynch syndromes I and II).I. Clinical description of resource.Cancer 1985;56:934-8.PubMedGoogle Scholar
  50. 50.
    Lynch HT, Schuelke GS, Kimberling WJ et al.Hereditary non-polyposis colorectal cancer (Lynch syndromes I and II).II. Biomarker studies.Cancer 1985;56:939-51.PubMedGoogle Scholar
  51. 51.
    Niell BL, Long JC, Rennert G et al.Genetic anthropology of the colorectal cancer-susceptibility allele APC I1307K:evidence of genetic drift within the Ashkenazim.Am J Hum Genet 2003;73: 1250-60.PubMedGoogle Scholar
  52. 52.
    Lynch HT, Shaw MW, Magnuson CW et al.Hereditary factors in cancer:study of two large Midwestern kindreds.Arch Intern Med 1966;117:206-12.PubMedGoogle Scholar
  53. 53.
    Warthin AS.Heredity with reference to carcinoma as shown by the study of the cases examined in the pathological laboratory of the University of Michigan, 1895-1913.Arch Intern Med 1913; 12:546-55.Google Scholar
  54. 54.
    Yan H, Papadopoulos N, Marra G et al.Conversion of diploidy to haploidy:individuals susceptible to multigene disorders may now be spotted more easily.Nature 2000;403:723-4.PubMedGoogle Scholar
  55. 55.
    Lynch PM, Lynch HT, Harris RE.Hereditary proximal colonic cancer.Dis Colon Rectum 1977;20:661-8.PubMedGoogle Scholar
  56. 56.
    Albano WA, Recabaren JA, Lynch HT et al.Natural history of hereditary cancer of the breast and colon.Cancer 1982;50:360-3.PubMedGoogle Scholar
  57. 57.
    Lynch HT, Watson P, Lanspa SJ et al.Natural history of colorectal cancer in hereditary non-polyposis colorectal cancer (Lynch Syndromes I and II).Dis Colon Rectum 1988;31: 439-44.PubMedGoogle Scholar
  58. 58.
    Lynch HT, Lin K, Smyrk T et al.Colorectal cancer, pathology staging and survival in HNPCC.ASCO Program/Proceedings 1997;16:530a (Abstract).Google Scholar
  59. 59.
    Watson P, Lin K, Rodriguez-Bigas MA et al.Colorectal carcinoma survival among hereditary non-polyposis colorectal cancer family members.Cancer 1998;83:259-66.PubMedGoogle Scholar
  60. 60.
    Jass JR, Smyrk TC, Stewart SM et al.Pathology of hereditary non-polyposis colorectal cancer.Anticancer Res 1994;14: 1631-4.PubMedGoogle Scholar
  61. 61.
    Smyrk TC, Watson P, Kaul K et al.Tumor-in ltrating lymphocytes are a marker for microsatellite instability in colorectal cancer.Cancer 2001;91:2417-22.PubMedGoogle Scholar
  62. 62.
    Watson P, Lynch HT.Extracolonic cancer in hereditary non-polyposis colorectal cancer.Cancer 1993;71:677-85.PubMedGoogle Scholar
  63. 63.
    Risinger JI, Barrett JC, Watson P et al.Molecular genetic evidence of the occurrence of breast cancer as an integral tumor in patients with the hereditary non-polyposis colorectal cancer syndrome.Cancer 1996;77:1836-43.PubMedGoogle Scholar
  64. 64.
    Lynch HT, Krush AJ.Cancer family "G "revisited:1895-1970. Cancer 1971;27:1505-11.PubMedGoogle Scholar
  65. 65.
    Lynch HT, Smyrk T.Colorectal cancer, survival advantage, and hereditary non-polyposis colorectal cancer.Gastroenterology 1996;110:943-7.PubMedGoogle Scholar
  66. 66.
    Jass JR, Stewart SM. Evolution of hereditary non-polyposis colorectal cancer.Gut 1992;33:783-6.PubMedGoogle Scholar
  67. 67.
    Jass JR, Stewart SM, Stewart J et al.Hereditary non-polyposis colorectal cancer-morphologies, genes and mutations.Mutation Res 1994;310:125-33.PubMedGoogle Scholar
  68. 68.
    Jass JR.Colorectal adenoma progression and genetic change:is there a link?Ann Med 1995;27:301-6.PubMedGoogle Scholar
  69. 69.
    Jass JR.Natural history of hereditary non-polyposis colorectal cancer.J Tumor Marker Oncol 1995;10:65-71.Google Scholar
  70. 70.
    Terakawa N, Hayashida M, Shimiziu I et al.Growth inhibition by progestins in human endometrial cancer cell line with estrogen-independent progesterone receptors.Cancer Res 1987; 47:1918-23.PubMedGoogle Scholar
  71. 71.
    Steiner GJ, Kistner RW, Craig JM.Histological effects of progestins on hyperplasia and carcinoma in situ of the endometrium-further observations.Metabolism 1965;14:356-65.Google Scholar
  72. 72.
    Yaron M, Levy T, Chetrit A et al.The polymorphic CAG repeat in the androgen receptor gene in Jewish Israeli women with endometrial cancer.Cancer 2001;92:1190-4.PubMedGoogle Scholar
  73. 73.
    Prodi G, Nicoletti G, De Giovanni C et al.Multiple steroid hormone receptors in normal and abnormal human endometrium.J Cancer Res Clin Oncol 1980;98:173-83.PubMedGoogle Scholar
  74. 74.
    Neulen J, Wagner B, Runge M et al.Effect of progestins, androgens, estrogens and antiestrogens of 3H-thymidine uptake by human endometrial and endosalpinx cells in vitro. Arch Gynecol 1987;240:225-32.PubMedGoogle Scholar
  75. 75.
    Rose GL, White JO, Dowsett M et al.The inhibitory effects of danazol, danazol metabolites, gestrione, and testosterone on the growth of human endometrial cells in vivo. Fertil Steril 1988;49: 224-8.PubMedGoogle Scholar
  76. 76.
    Menczer J.The low incidence of cervical cancer in Jewish women:has the puzzle nally been solved?Isr Med Assoc J 2003;5:120-3.PubMedGoogle Scholar
  77. 77.
    Braithwaite J.Excess of salt in the diet:a probable factor in the causation of cancer.Lancet 1901;ii:1578-80.Google Scholar
  78. 78.
    Hochman A, Ratzkowski E, Schreiber H et al.Incidence of carcinoma of the cervix in Israel.Br J Cancer 1955;9:358-64.PubMedGoogle Scholar
  79. 79.
    Rigoni-Stern D.[Chapter title unknown ].In Rotkin Ricci JV (ed):One Hundred Years of Gynaecology, 1800-1900.Philadelphia, Pennsylvania: Blackstone Co.1945.Google Scholar
  80. 80.
    Gagnon F.Contribution to the study of the etiology and prevention of cancer of the cervix of the uterus.Am J Obstet Gynecol 1950;50:516-22.Google Scholar
  81. 81.
    Bosch FX, Manos MM, Munoz N et al.Prevalence of human papillomavirus in cervical cancer:a worldwide perspective.J Natl Cancer Inst 1995;87:796-802.PubMedGoogle Scholar
  82. 82.
    P ster H.The role of human papillomavirus in anogenital cancer. Obstet Gynecol Clin North Am 1996;23:579-95.Google Scholar
  83. 83.
    Bosch FX, Munoz N, de Sanjose S.Human papillomavirus and other risk factors for cervical cancer.Biomed Pharmacol 1997; 51:268-75.Google Scholar
  84. 84.
    Stewart HL, Dunham LJ, Casper J et al.Epidemiology of cancers of the uterine cervix and corpus, breast and ovary in Israel and New York City.J Natl Cancer Inst 1966;37:1-95.PubMedGoogle Scholar
  85. 85.
    Kullander S.Hereditary factors in human cervical cancer.In Lynch HT, Kullander S (eds):Cancer Genetics in Women.Boca Raton, Florida: CRC Press 1987;113-21.Google Scholar
  86. 86.
    Arbel-Alon S, Menczer J, Feldman N et al.Codon 72 polymorphism of p53 in Israeli Jewish cervical cancer patients and healthy women.Int J Gynecol Cancer 2002;12:741-4.PubMedGoogle Scholar
  87. 87.
    Lynch HT, Lemon SJ, Durham C et al.A descriptive study of BRCA1 testing and reactions to disclosure of test results.Cancer 1997;79:2219-28.PubMedGoogle Scholar
  88. 88.
    Kauff ND, Scheuer L, Robson ME et al.Insurance reimburse-ment for risk-reducing mastectomy and oophorectomy in women with BRCA1 or BRCA2 mutations.Genet Med 2001;3:422-5.PubMedGoogle Scholar
  89. 89.
    Peterson EA, Milliron KJ, Lewis KE et al.Health insurance and discrimination concerns and BRCA1/2 testing in a clinic population.Cancer Epidemiol Biomarkers Prev 2002;11:79-87.PubMedGoogle Scholar
  90. 90.
    Peters J.Familial cancer risk-Part I:impact on today 's oncology practice.J Oncol Manag 1994;3:18-30.Google Scholar
  91. 91.
    Peters J.Familial cancer risk-Part II.Breast cancer risk counseling and genetic susceptiblity testing.J Oncol Manag 1994;3:14-22.Google Scholar
  92. 92.
    Hartmann LC, Sellers TA, Schaid DJ et al.Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers.J Natl Cancer Inst 2001;93:1633-7.PubMedGoogle Scholar
  93. 93.
    Rebbeck TR, Friebel T, Lynch HT et al.Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers:the PROSE Study Group.J Clin Oncol 2004; 22:1055-62.PubMedGoogle Scholar
  94. 94.
    Hartmann LC, Degnim A, Schaid DJ.Prophylactic mastectomy for BRCA1/2 carriers:progress and more questions.J Clin Oncol 2004;22:981-3.PubMedGoogle Scholar
  95. 95.
    Rebbeck TR, Levin AM, Eisen A et al.Breast cancer risk after bilateral prophylactic oophorectomy in BRCA1 mutation carriers.J Natl Cancer Inst 1999;91:1475-9.PubMedGoogle Scholar
  96. 96.
    Narod SA, Brunet J-S, Ghadirian P et al.Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers:a case-control study.Lancet 2000;356:1876-81.PubMedGoogle Scholar
  97. 97.
    Lynch HT, Lynch JF, Rubinstein WS.Prophylactic mastectomy: obstacles and benefits.J Natl Cancer Inst 2001;93:1586-7.PubMedGoogle Scholar
  98. 98.
    Scheuer L, Kauff N, Robson M et al.Outcome of preventive surgery and screening for breast and ovarian cancer in BRCA mutation carriers.J Clin Oncol 2002;20:1260-8.PubMedGoogle Scholar
  99. 99.
    Eisen A, Rebbeck TR, Wood WC et al.Prophylactic surgery in women with a hereditary predisposition to breast and ovarian cancer.J Clin Oncol 2000;18:1980-95.PubMedGoogle Scholar
  100. 100.
    Rebbeck TR, Lynch HT, Neuhausen SL et al.Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations.N Engl J Med 2002;346:1616-22.PubMedGoogle Scholar
  101. 101.
    Petricoin III EF, Ardekani AM, Hitt BA et al.Use of proteomic patterns in serum to identify ovarian cancer.Lancet 2002;359: 572-7.PubMedGoogle Scholar
  102. 102.
    Dyck HG, Hamilton TC, Godwin AK et al.Autonomy of the epithelial phenotype in human ovarian surface epithelium: changes with neoplastic progression and with a family history of ovarian cancer.Int J Cancer (Pred Oncol)1996;69:429-36.Google Scholar
  103. 103.
    Hensley ML, Castiel M, Robson ME.Screening for ovarian cancer:what we know, what we need to know.Oncology 2001;14: 1601-7.Google Scholar
  104. 104.
    Oddoux C, Struewing JP, Clayton CM et al.The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1%.Nat Genet 1996;14: 188-90.PubMedGoogle Scholar
  105. 105.
    Risch HA, McLaughlin JR, Cole DEC et al.Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer.Am J Hum Genet 2001;68:700-10.PubMedGoogle Scholar
  106. 106.
    Gutman M, Inbar M, Klausner JM et al.Malignant melanoma in different ethnic groups in Israel:incidence and biologic behavior.Cancer 1993;71:2746-50.PubMedGoogle Scholar
  107. 107.
    Hodak E, Lapidoth M, Kohn K et al.Mycosis fungoides:HLA class II associations among Ashkenazi and non-Ashkenazi Jewish patients.Br J Dermatol 2001;145:974-80.PubMedGoogle Scholar
  108. 108.
    Girardi M, Heald PW, Wilson LD.The pathogenesis of mycosis fungoides.N Engl J Med 2004;350:1978-88.PubMedGoogle Scholar
  109. 109.
    Iscovich J, Boffetta P, Franceschi S et al.Classic kaposi sarcoma: epidemiology and risk factors.Cancer 2000;88:500-17.PubMedGoogle Scholar
  110. 110.
    Ross RK, Casagrande JT, Dworsky RL et al.Kaposi 's sarcoma in Los Angeles, California.J Natl Cancer Inst 1985;75:1011-5.PubMedGoogle Scholar
  111. 111.
    DiGiovanna JJ, Safai B.Kaposi 's sarcoma.Retrospective study of 90 cases with particular emphasis on the familial occurrence, ethnic background and prevalence of other diseases.Am J Med 1981;71:779-83.PubMedGoogle Scholar
  112. 112.
    Strichman-Almashanu L, Weltfriend S, Gideoni O et al.No significant association between HLA antigens and classic Kaposi sarcoma:molecular analysis of 49 Jewish patients.J Clin Immunol 1995;15:205-9.PubMedGoogle Scholar
  113. 113.
    Goedert JJ, Vitale F, Lauria C et al.Risk factors for classical Kaposi 's sarcoma.J Natl Cancer Inst 2002;94:1712-8.PubMedGoogle Scholar
  114. 114.
    Morgan GJ, Davies FE, Linet M.Myeloma aetiology and epidemiology.Biomed Pharmacother 2002;56:223-34.PubMedGoogle Scholar
  115. 115.
    Bowden M, Crawford J, Cohen HJ et al.A comparative study of monoclonal gammopathies and immunoglobulin levels in Japa-nese and United States elderly.J Am Geriatr Soc 1993;41:11-4.PubMedGoogle Scholar
  116. 116.
    Crozes-Bony P, Palazzo E, Meyer O et al.Familial multiple myeloma.Report of a case in a father and daughter.Review of the literature.Rev Rhum Engl Ed 1995;62:439-45.PubMedGoogle Scholar
  117. 117.
    Grosbois B, Jego P, Attal M et al.Familial multiple myeloma: report of fteen families.Br J Haematol 1999;105:768-70.PubMedGoogle Scholar
  118. 118.
    Leech SH, Bryan CF, Elston RC et al.Genetic studies in multiple myeloma:1.Association with HLA-Cw5.Cancer 1983;51: 1408-11.PubMedGoogle Scholar
  119. 119.
    Roddie PH, Dang R, Parker AC. Case report:multiple myeloma in three siblings.Clin Lab Haematol 1998;20:191-3.PubMedGoogle Scholar
  120. 120.
    Deshpande HA, Hu XP, Marino P et al.Anticipation in familial plasma cell dyscrasias.Br J Haematol 1998;103:696-703.PubMedGoogle Scholar
  121. 121.
    Loth TS, Perrotta AL, Lima J et al.Genetic aspects of familial multiple myeloma.Military Med 1991;156:430-3.Google Scholar
  122. 122.
    Eriksson M, Hallberg B.Familial occurrence of hematologic malignancies and other diseases in multiple myeloma:a case-control study.Cancer Causes Control 1992;3:63-7.PubMedGoogle Scholar
  123. 123.
    Dilworth D, Liu L, Stewart K et al.Germline CDKN2A mutation implicated in predisposition to multiple myeloma. Blood 2000;95:1869-71.PubMedGoogle Scholar
  124. 124.
    Bizzaro N, Pasini P.Familial occurrence of multiple myeloma and monoclonal gammopathy of undetermined significance in 5 siblings.Haematologica 1990;75:58-63.PubMedGoogle Scholar
  125. 125.
    Zawadzki ZA, Aizawa Y, Kraj MA et al.Familial immunopa-thies:report of nine families and survey of literature.Cancer 1977;40:2094-101.PubMedGoogle Scholar
  126. 126.
    Meijers KAE, de Leeuw B, Voormolen-Ka ´lova M.The multiple occurrence of myeloma and asymptomatic paraproteinaemia within one family.Clin Exp Immunol 1972;12:185-93.PubMedGoogle Scholar
  127. 127.
    Shoenfeld Y, Berliner S, Shaklai M et al.Familial multiple myeloma.A review of thirty-seven families.Postgrad Med J 1982;58:12-6.PubMedGoogle Scholar
  128. 128.
    Kyle RA, Finkelstein S, Elveback LR et al.Incidence of monoclonal proteins in a Minnesota community with a cluster of multiple myeloma.Blood 1972;40:719-24.PubMedGoogle Scholar
  129. 129.
    Kyle RA, Heath CW, Carbone P.Multiple myeloma in spouses. Arch Intern Med 1971;127:944-6.PubMedGoogle Scholar
  130. 130.
    Horwitz LJ, Levy RN, Rosner F.Multiple myeloma in three siblings.Arch Intern Med 1985;145:1449-50.PubMedGoogle Scholar
  131. 131.
    McCrea AP, Morris TCM.Concurrent familial myeloma in Northern Ireland.Cancer 1986;58:394-6.PubMedGoogle Scholar
  132. 132.
    Ludwig H, Mayr W.Genetic aspects of susceptibility to multiple myeloma.Blood 1982;59:1286-91.PubMedGoogle Scholar
  133. 133.
    Berlin SO, Odeberg H, Weingart L.Familial occurrence of M components.Acta Med Scand 1968;18:347-50.Google Scholar
  134. 134.
    Lynch HT, Sanger WG, Pirruccello S et al.Familial multiple myeloma:a family study and review of the literature.J Natl Cancer Inst 2001;93:1479-83.PubMedGoogle Scholar
  135. 135.
    Brown LM, Linet MS, Greenberg RS et al.Multiple myeloma and family history of cancer among blacks and whites in the U.S. Cancer 1999;85:2385-90.PubMedGoogle Scholar
  136. 136.
    Bernstein L, Newton P, Ross RK.Epidemiology of hairy cell leukemia in Los Angeles County.Cancer Res 1990;50:3605-9.PubMedGoogle Scholar
  137. 137.
    Linet MS.The Leukemias:Epidemiologic Aspects.New York: Oxford University Press 1985.Google Scholar
  138. 138.
    Segel R, Silverstein S, Lerer I et al.Prevalence of myotonic dystrophy in Israeli Jewish communities:inter-community variation and founder premutations.Am J Med Genet 2003; 119A:273-8.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Henry T. Lynch
    • 1
    • 2
  • Wendy S. Rubinstein
    • 2
  • Gershon Y. Locker
    • 3
  1. 1.Department of Preventive Medicine and Public HealthCreighton University School of MedicineOmahaUSA;
  2. 2.Center for Medical GeneticsEvanstonUSA
  3. 3.Hematology/Oncology, Evanston Northwestern Health CareEvanstonUSA

Personalised recommendations