Functional Analysis and Its Applications

, Volume 52, Issue 1, pp 70–73 | Cite as

On Spectral Asymptotics of the Neumann Problem for the Sturm–Liouville Equation with Arithmetically Self-Similar Weight of a Generalized Cantor Type

  • N. V. Rastegaev
Brief Communications


Spectral asymptotics of the Sturm–Liouville problem with an arithmetically self-similar singular weight is considered. Previous results by A. A. Vladimirov and I. A. Sheipak, and also by the author, rely on the spectral periodicity property, which imposes significant restrictions on the self-similarity parameters of the weight. This work introduces a new method for estimating the eigenvalue counting function. This makes it possible to consider a much wider class of self-similar measures.

Key words

spectral asymptotics semi-similar measure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. A. Vladimirov and I. A. Sheipak, Funkts. Anal. Prilozhen., 47:4 (2013), 18–29; English transl.: Functional Anal. Appl., 47:4 (2013), 261–270.CrossRefGoogle Scholar
  2. [2]
    N. V. Rastegaev, Zap. Nauchn. Sem. POMI, 425 (2014), 86–98; English transl.: J. Math. Sci. (N. Y.), 210:6 (2015), 814–821.Google Scholar
  3. [3]
    M. G. Krein, Dokl. Akad. Nauk SSSR, 76:3 (1951), 345–348.Google Scholar
  4. [4]
    M. Solomyak and E. Verbitsky, Bull. London Math. Soc., 27:3 (1995), 242–248.MathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Kigami and M. L. Lapidus, Comm. Math. Phys., 158:1 (1991), 93–125.CrossRefGoogle Scholar
  6. [6]
    A. I. Nazarov, Zap. Nauchn. Sem. POMI, 311 (2004), 190–213; English transl.: J. Math. Sci. (N. Y.), 133:3 (2006), 1314–1327.Google Scholar
  7. [7]
    A. A. Vladimirov, Algebra i Analiz, 27:2 (2015), 83–95; English transl.: St. Petersburg Math. J., 27:2 (2016), 237–244.Google Scholar
  8. [8]
    I. A. Sheipak, Mat. Zametki, 81:6 (2007), 924–938; English transl.: Math. Notes, 81:6 (2007), 827–839.MathSciNetCrossRefGoogle Scholar
  9. [9]
    J. E. Hutchinson, Indiana Univ. Math. J., 30:5 (1981), 713–747.MathSciNetCrossRefGoogle Scholar
  10. [10]
    A. A. Vladimirov, Zh. Vych. Mat. i Mat. Fiz., 49:9 (2009), 1609–1621; English transl.: Comput. Math. Math. Phys., 49:9 (2009), 1535–1546.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chebyshev LaboratorySaint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations