Functional Analysis and Its Applications

, Volume 52, Issue 1, pp 62–65 | Cite as

On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure

  • A. V. Pokrovskii
Brief Communications


It is shown that, for any compact set K ⊂ ℝ n (n ⩾ 2) of positive Lebesgue measure and any bounded domain GK, there exists a function in the Hölder class C1,1(G) that is a solution of the minimal surface equation in G \ K and cannot be extended from G \ K to G as a solution of this equation.

Key words

minimal surface equation Hölder class removable set nonlinear mapping Schauder theorem fixed point 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. P. Dolzhenko, Uspekhi Mat. Nauk, 18:4(112) (1963), 135–142; English transl.: Amer. Math. Soc. Transl., 97:2 (1970), 33–41.MathSciNetGoogle Scholar
  2. [2]
    Nguen Xuan Uy, Ark. Mat., 17:1 (1979), 19–27.MathSciNetCrossRefGoogle Scholar
  3. [3]
    S. V. Khrushchev, Zap. Nauchn. Sem. LOMI, 113 (1981), 199–203; English transl.: J. Sov. Math., 22:6 (1983), 1829–1832.Google Scholar
  4. [4]
    L. Carleson, Math. Scand., 12 (1963), 15–18.MathSciNetCrossRefGoogle Scholar
  5. [5]
    E. P. Dolzhenko, Izv. Acad. Nauk SSSR Ser Mat., 28:5 (1964), 1113–1130.Google Scholar
  6. [6]
    E. P. Dolzhenko, Izv. Acad. Nauk SSSR Ser. Mat., 28:6 (1964), 1251–1270.Google Scholar
  7. [7]
    J. Verdera, Duke Math. J., 55:1 (1987), 157–187.MathSciNetCrossRefGoogle Scholar
  8. [8]
    A. V. Pokrovskii, in: Sovrem. Mat. Prilozh., No 57, Trudy Mezhdunarodnoi Konferentsii po Dinamicheskim Sistemam i Differentsial'nym Uravneniyam, Ch. 3, 2008, 54–72; English transl.: J. Math. Sci., 160:1 (2009), 61–83.Google Scholar
  9. [9]
    A. V. Pokrovskii, Funkts. Anal. Prilozhen., 39:4 (2005), 62–68; English transl.: Functional Anal. Appl., 39:4 (2005), 296–300.CrossRefGoogle Scholar
  10. [10]
    L. Bers, Ann. of Math., 53 (1951), 364–386.MathSciNetCrossRefGoogle Scholar
  11. [11]
    E. De Giorgi and G. Stampacchia, Atti Accad. Naz. Lincei, Rend., Cl. Sci. Fis. Mat. Nat., 38 (1965), 352–357.Google Scholar
  12. [12]
    M. Miranda, “Sulla singolarità eliminabili delle soluzioni dell’equazione delle superfici minime,” Ann. Scuola Norm. Sup. Pisa, Cl. Sci., Ser. IV, 4:1 (1977), 129–132.zbMATHGoogle Scholar
  13. [13]
    L. Veron, Singularities of Solutions of Second Order Quasilinear Elliptic Equations, Addison Wesley Longman, London, 1996.zbMATHGoogle Scholar
  14. [14]
    H. Brezis and L. Nirenberg, Topol. Methods Nonlinear Anal., 9:2 (1997), 201–219.MathSciNetCrossRefGoogle Scholar
  15. [15]
    E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel, 1984.CrossRefzbMATHGoogle Scholar
  16. [16]
    D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1983.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MathematicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations