Advertisement

Functional Analysis and Its Applications

, Volume 52, Issue 1, pp 57–61 | Cite as

On Extrapolation Properties of Schatten–von Neumann Classes

  • K. V. Lykov
Brief Communications
  • 19 Downloads

Abstract

For a certain special class of symmetric sequence spaces, we give an explicit relation between the interpolation and extrapolation representations. This relation is carried over to symmetrically normed ideals of compact operators.

Key words

symmetric sequence spaces extrapolation space interpolation space Schatten–von Neumann classes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Ya. Khelemskii, Lectures and Exercises on Functional Analysis, Amer. Math. Soc., Providence, RI, 2006.CrossRefGoogle Scholar
  2. [2]
    I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Amer. Math. Soc., Providence, RI, 1969, 1988.Google Scholar
  3. [3]
    I. Ts. Gokhberg and M. G. Krein, Theory and Applications of Volterra Operators on Hilbert Space, Amer. Math. Soc., Providence, RI, 1970, 2004.CrossRefGoogle Scholar
  4. [4]
    B. Jawerth and M. Milman, in: Interpolation Spaces and Related Topics (Haifa, 1990), Israel Math. Conf. Proc., 5, Bar-Ilan Univ., Ramat Gan, 1992, 81–105.Google Scholar
  5. [5]
    M. Milman, Extrapolation and Optimal Decompositions with Applications to Analysis, Lecture Notes in Math., vol. 1580, Springer-Verlag, Berlin, 1994.Google Scholar
  6. [6]
    S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators, Amer. Math. Soc., Providence, RI, 1982.Google Scholar
  7. [7]
    Yu. A. Brudnyi and N. Ya. Krugliak, Interpolation Functors and Interpolation Spaces, vol. 1, North-Holland, Amsterdam, 1991.Google Scholar
  8. [8]
    S. V. Astashkin and K. V. Lykov, Sibirsk. Mat. Zh., 50:2 (2009), 250–266; English transl.: Siberian Math. J., 50:2 (2009), 199–213.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of SciencesSamaraRussia
  2. 2.Samara National Research UniversitySamaraRussia

Personalised recommendations