Advertisement

Functional Analysis and Its Applications

, Volume 52, Issue 1, pp 49–52 | Cite as

Restricted Lie (Super)Algebras in Characteristic 3

  • S. Bouarroudj
  • A. O. Krutov
  • A. V. Lebedev
  • D. A. Leites
  • I. M. Shchepochkina
Brief Communications
  • 37 Downloads

Abstract

We give explicit formulas proving that the following Lie (super)algebras are restricted: known exceptional simple vectorial Lie (super)algebras in characteristic 3, deformed Lie (super)algebras with indecomposable Cartan matrix, simple subquotients over an algebraically closed field of characteristic 3 of these (super)algebras (under certain conditions), and deformed divergence-free Lie superalgebras of a certain type with any finite number of indeterminates in any characteristic.

Key words

restricted Lie algebra characteristic 3 Lie superalgebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. E. Block and R. L. Wilson, J. Algebra, 114:1 (1988), 115–259.MathSciNetCrossRefGoogle Scholar
  2. [2]
    S. Bouarroudj, P. Grozman, A. Lebedev, D. Leites, and I. Shchepochkina, International Math. Res. Not., 18 (2016), 5695–5726; http://arxiv.org/abs/1307.1551.CrossRefGoogle Scholar
  3. [3]
    S. Bouarroudj, P. Grozman, A. Lebedev, D. Leites, and I. Shchepochkina, http://arxiv.org/ abs/1510.07255.Google Scholar
  4. [4]
    S. Bouarroudj, P. Ya. Grozman, and D. A. Leites, Funkts. Anal. Prilozhen., 42:3 (2008), 1–9; English transl.: Functional Anal. Appl., 42:3 (2008), 161–168; http://arxiv.org/abs/0704.0130.CrossRefGoogle Scholar
  5. [5]
    S. Bouarroudj, P. Grozman, and D. Leites, Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 5 (2009), 060; http://arxiv.org/abs/0710.5149.Google Scholar
  6. [6]
    S. Bouarroudj, P. Grozman, and D. Leites, http://arxiv.org/abs/0807.3054.Google Scholar
  7. [7]
    S. Bouarroudj, A. V. Lebedev, and F. Wagemann, Mat. Zametki, 89:6 (2011), 808–824; English transl.: Math. Notes, 89:6 (2011), 777–791; http://arxiv.org/abs/0909.3572.CrossRefGoogle Scholar
  8. [8]
    S. Bouarroudj, A. Lebedev, D. Leites, and I. Shchepochkina, http://arxiv.org/abs/1407.1695.Google Scholar
  9. [9]
    S. Bouarroudj and D. A. Leites, Zap. Nauchn. Sem. POMI, 331 (2006), 15–29; J. Math. Sci. (N. Y.), 141:4 (2007), 1390–1398; http://arxiv.org/abs/math/0606682.Google Scholar
  10. [10]
    P. Grozman, http://www.equaonline.com/math/SuperLie.Google Scholar
  11. [11]
    P. Grozman and D. Leites, Lett. Math. Phys., 74:3 (2005), 229–262; http://arxiv.org/abs/ math/0509400.MathSciNetCrossRefGoogle Scholar
  12. [12]
    V. G. Kac, Izv. Akad. Nauk SSSR, Ser. Matem., 38:4 (1974), 800–834; English transl.: Math. USSR Izv., 8:4 (1974), 801–835.Google Scholar
  13. [13]
    A. I. Kostrikin, Izv. Akad. Nauk SSSR, Ser. Matem., 34:4 (1970), 744–756; English transl.: Math. USSR Izv., 4:4 (1970), 751–764.Google Scholar
  14. [14]
    A. Lebedev and D. Leites (with an appendix by P. Deligne), J. Prime Research in Math., 2:1 (2006), 1–13.Google Scholar
  15. [15]
    I. M. Shchepochkina, Teoret. Mat. Fiz., 147:3 (2006), 450–469; English transl.: Theoret. Math. Phys., 147:3 (2006), 821–838; http://arxiv.org/abs/math/0509472.MathSciNetCrossRefGoogle Scholar
  16. [16]
    H. Strade, Simple Lie algebras over fields of positive characteristic. I. Structure theory., de Gruyter Expositions in Mathematics, vol. 38, Walter de Gruyter & Co., Berlin, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Bouarroudj
    • 1
  • A. O. Krutov
    • 2
    • 3
  • A. V. Lebedev
    • 4
  • D. A. Leites
    • 1
    • 5
  • I. M. Shchepochkina
    • 6
  1. 1.Division of Science and MathematicsNew York UniversityAbu DhabiUnited Arab Emirates
  2. 2.Institute of MathematicsPolish Academy of SciencesWarszawaPoland
  3. 3.Independent University of MoscowMoscowRussia
  4. 4.Equa Simulation ABStockholmSweden
  5. 5.Department of MathematicsStockholm UniversityStockholmSweden
  6. 6.Independent University of MoscowMoscowRussia

Personalised recommendations