Advertisement

Functional Analysis and Its Applications

, Volume 50, Issue 4, pp 248–256 | Cite as

On a classifying property of regular representations

  • S. M. Ageev
Article
  • 39 Downloads

Abstract

We show that, for each connected compact Lie group G, the Hilbert G-space L 2(G) and the Banach G-space C(G;ℂ) classify the G-spaces.

Key words

classifying G-spaces isovariant absolute extensor regular representation space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Palais, “The classification of G-spaces,” Mem. Amer. Math. Soc., 36 (1960).Google Scholar
  2. [2]
    H. Torunczyk and J. E. West, “The fine structure of exp(S 1)/S 1; a Q-manifold hyperspace localization of the integers,” in: Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), PWN, Warsaw, 1980, 439–449.Google Scholar
  3. [3]
    S. M. Ageev, “Isovariant extensors and the characterization of equivariant homotopy equivalences,” Izv. Ross. Akad. Nauk Ser. Mat., 76:(5) (2012), 3–28; English transl.: Russian Acad. Sci. Izv. Math., 76:(5) (2012), 857–880.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    S. M. Ageev, “On Palais universal G-spaces and isovariant absolute extensors,” Mat. Sb., 203:(6) (2012), 3–34; English transl.: Sb. Math., 203:(6) (2012), 769–797.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    K. Borsuk, Theory of Retracts, Panstwowe Wydawnictwo Naukowe, Warsaw, 1967.MATHGoogle Scholar
  6. [6]
    S.-T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965.MATHGoogle Scholar
  7. [7]
    S. M. Ageev, “The exponent of compact Lie group as an universal space in the sense of R. Palais,” submitted to Fund. Math..Google Scholar
  8. [8]
    G. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York–London, 1972.MATHGoogle Scholar
  9. [9]
    H. Abels, “A universal proper G-space,” Math. Z., 159:(2) (1978), 143–158.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    T. Matumoto, “Equivariant K-theory and Fredholm operators,” J. Fac. Sci. Univ. Tokyo Sect. I A Math., 18 (1971), 109–125.MathSciNetMATHGoogle Scholar
  11. [11]
    S. Segal, “Equivariant contractibility of the general linear group of Hilbert space,” Bull. London Math. Soc., 1 (1969), 329–331.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    S. M. Ageev, “On the exponent of G-space and isovariant extensors,” Mat. Sb., 207:(2) (2016), 3–44; English transl.: Sb. Math., 207:(2) (2016), 155–190.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    A. O. Barut and R. A. Raczka, Theory of Group Representations and Applications, PWN–Polish Scientific Publishers, Warszawa, 1977.MATHGoogle Scholar
  14. [14]
    W. Y. Hsiang, Cohomology Theory of Topological Transformation Groups, Springer-Verlag, New York–Heidelberg, 1975.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsBelarus State UniversityMinskBelarus

Personalised recommendations