Advertisement

Functional Analysis and Its Applications

, Volume 49, Issue 3, pp 189–200 | Cite as

Henson graphs and Urysohn—Henson graphs as Cayley graphs

  • Gregory Cherlin
Article

Abstract

We discuss groups acting regularly on the Henson graphs Γ n , answering a question posed by Peter Cameron, and we explore a number of related questions.

Keywords

Cayley graph Henson graph homogeneity random graph regular action Urysohn space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Cameron, “Homogeneous Cayley objects,” European J. Combin., 21:6 (2000), 745–760.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    P. Cameron and K. Johnson, “An investigation on countable B-groups,” Math. Proc. Cambridge Philos. Soc., 102:2 (1987), 223–232.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    P. Cameron and A. Vershik, “Some isometry groups of the Urysohn space,” Ann. Pure Appl. Logic, 143:1–3 (2006), 70–78.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    G. L. Cherlin, “The classification of countable homogeneous directed graphs and countable homogeneous n-tournaments,” Mem. Amer. Math. Soc., 131 (1998), no. 621.Google Scholar
  5. [5]
    G. Cherlin, “Two problems on homogeneous structures, revisited,” in: Model Theoretic Methods in Finite Combinatorics, Contemporary Math., vol. 558, Amer. Math. Soc., Providence, RI, 2011, 319–415.Google Scholar
  6. [6]
    M. El-Zahar and N. Sauer, “The indivisibility of the homogeneous Kn-free graphs,” J. Combin. Theory Ser. B, 47:2 (1989), 162–170.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    C. Even-Zahar and N. Linial, “Triply existentially complete triangle-free graphs,” J. Graph Theory, 78:4 (2015), 305–317.MathSciNetCrossRefGoogle Scholar
  8. [8]
    R. Fra¨issé, “Sur certains relations qui généralisent l’ordre des nombres rationnels,” C. R. Acad. Sci. Paris, 237 (1953), 540–542.MathSciNetGoogle Scholar
  9. [9]
    C. W. Henson, “A family of countable homogeneous graphs,” Pacific J. Math., 38 (1971), 69–83.MathSciNetCrossRefGoogle Scholar
  10. [10]
    P. S. Urysohn, “Sur un espace métrique universel,” C. R. Acad. Sci. Paris, 180 (1925), 803–806.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematics Rutgers UniversityNew YorkUSA

Personalised recommendations