Advertisement

Functional Analysis and Its Applications

, Volume 46, Issue 4, pp 249–261 | Cite as

A criterion for the fundamental principle to hold for invariant subspaces on bounded convex domains in the complex plane

  • O. A. Krivosheeva
  • A. S. Krivosheev
Article
  • 77 Downloads

Abstract

Let D be a bounded convex domain of the complex plane. We study the problem of whether the fundamental principle holds for analytic function spaces on D invariant with respect to the differentiation operator and admitting spectral synthesis. Earlier this problem was solved under a restriction on the multiplicities of the eigenvalues of the differentiation operator. In the present paper, we lift this restriction. Thus, we present a complete solution of the fundamental principle problem for arbitrary nontrivial closed invariant subspaces admitting spectral synthesis on arbitrary bounded convex domains.

Key words

analytic function convex domain invariant subspace fundamental principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. V. Napalkov, Convolution Equations on Multidimensional Spaces [in Russian], Nauka, Moscow, 1982.Google Scholar
  2. [2]
    A. F. Leont’ev, Exponential Series [in Russian], Nauka, Moscow, 1976.Google Scholar
  3. [3]
    I. F. Krasichkov-Ternovskii, “A homogeneous convolution type equation on convex domains,” Dokl. Akad. Nauk SSSR, 197:1 (1971), 29–31.MathSciNetGoogle Scholar
  4. [4]
    A. S. Krivosheev, “Fundamental principle for invariant subspaces on convex domains,” Izv. Ross. Akad. Nauk Ser. Mat., 68:2 (2004), 71–136; English transl.: Russian Acad. Sci. Izv. Math., 68: 2 (2004), 291–353.MathSciNetGoogle Scholar
  5. [5]
    G. Valiron, “Sur les solutions des équations différentielles linéaires d’ordre infini et à coefficients constants,” Ann. Sci. Ecole Norm. Sup., 46:1 (1929), 25–53.MathSciNetMATHGoogle Scholar
  6. [6]
    L. Schwartz, “Théorie générale des fonctions moyenne-périodique,” Ann. Math., 48:4 (1947), 857–929.MATHCrossRefGoogle Scholar
  7. [7]
    A. O. Gelfond, “Linear differential equations of infinite order with constant coefficients and asymptotic periods of entire functions,” Trudy Mat. Inst. Steklov, 38 (1951), 42–67.MathSciNetGoogle Scholar
  8. [8]
    D. G. Dickson, “Expansions in series of solutions of linear difference-differential and infinite order differential equations with constant coefficients,” Mem. Amer. Math. Soc., 1957:23 (1957), 1–72.Google Scholar
  9. [9]
    B. Ya. Levin, “On some applications of the Lagrange interpolation series to the theory of entire functions,” Mat. Sb., 8:3 (1940), 437–454.Google Scholar
  10. [10]
    Yu. F. Korobeinik, “Interpolation problems, nontrivial expansions of zero, and representing systems,” Izv. Akad. Nauk SSSR Ser. Mat., 44:5 (1980), 1066–1114; English transl.: Math. USSR-Izv., 17:2 (1981), 299–337.MathSciNetGoogle Scholar
  11. [11]
    Yu. F. Korobeinik, “Representing systems,” Uspekhi Mat. Nauk, 36:1 (1981), 73–126; English transl.: Russian Math. Surveys, 36:1 (1981), 75–137.MathSciNetGoogle Scholar
  12. [12]
    A. V. Bratiščev and Yu. F. Korobeinik, “The multiple interpolation problem in the spaces of entire functions of given proximate order,” Izv. Akad. Nauk SSSR Ser. Mat., 40:5 (1976), 1102–1127; English transl.: Math. USSR-Izv., 10:5 (1976), 1049–1074.MathSciNetGoogle Scholar
  13. [13]
    A. V. Bratishchev, Köthe bases, entire functions, and their applications [in Russian], Doctoral Dissertation (Physics-Mathematics), Rostov-on-Don, 1995.Google Scholar
  14. [14]
    A. S. Krivosheev, “A criterion for the fundamental principle for invariant subspaces,” Dokl. Ross. Akad. Nauk, 389:4 (2003), 457–460.MathSciNetGoogle Scholar
  15. [15]
    A. F. Leont’ev, Entire Functions. Exponential Series [in Russian], Nauka, Moscow, 1983.Google Scholar
  16. [16]
    K. Leichtweiss, Konvexe Mengen, Springer-Verlag, Berlin-New York, 1980.CrossRefGoogle Scholar
  17. [17]
    O. A. Krivosheeva, “Series of exponential monomials on complex domains,” Vestnik UGATU. Matem., 9:3(21) (2007), 96–103.Google Scholar
  18. [18]
    O. A. Krivosheeva, “Singular points of the sum of an exponential series on the boundary of the domain of convergence,” Ufimsk. Mat. Zh., 1:4 (2009), 78–109.Google Scholar
  19. [19]
    V. V. Napalkov and O. A. Krivosheeva, “Abel and Cauchy-Hadamard theorems for series of exponential monomials,” Dokl. Ross. Akad. Nauk, 432:5 (2010), 594–596; English transl.: Russian Acad. Sci. Dokl., 432:5 (2010), 449–451.MathSciNetGoogle Scholar
  20. [20]
    A. Robertson and W. Robertson, Topological Vector Spaces, Cambridge Univ. Press, New York, 1964.MATHGoogle Scholar
  21. [21]
    P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Springer-Verlag, New York, 1986.MATHCrossRefGoogle Scholar
  22. [22]
    B. Ya. Levin, Distribution of Zeroes of Entire Functions, Transl. Math. Monographs Series, vol. 5, Amer. Math. Soc., Providence, RI, 1964.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Bashkir State UniversityUfaRussia
  2. 2.Institute for Mathematics and Computer Center, Ural Scientific CenterRussian Academy of SciencesSverdlovskRussia

Personalised recommendations