Functional Analysis and Its Applications

, Volume 46, Issue 4, pp 249–261

# A criterion for the fundamental principle to hold for invariant subspaces on bounded convex domains in the complex plane

Article

## Abstract

Let D be a bounded convex domain of the complex plane. We study the problem of whether the fundamental principle holds for analytic function spaces on D invariant with respect to the differentiation operator and admitting spectral synthesis. Earlier this problem was solved under a restriction on the multiplicities of the eigenvalues of the differentiation operator. In the present paper, we lift this restriction. Thus, we present a complete solution of the fundamental principle problem for arbitrary nontrivial closed invariant subspaces admitting spectral synthesis on arbitrary bounded convex domains.

## Key words

analytic function convex domain invariant subspace fundamental principle

## References

1. [1]
V. V. Napalkov, Convolution Equations on Multidimensional Spaces [in Russian], Nauka, Moscow, 1982.Google Scholar
2. [2]
A. F. Leont’ev, Exponential Series [in Russian], Nauka, Moscow, 1976.Google Scholar
3. [3]
I. F. Krasichkov-Ternovskii, “A homogeneous convolution type equation on convex domains,” Dokl. Akad. Nauk SSSR, 197:1 (1971), 29–31.
4. [4]
A. S. Krivosheev, “Fundamental principle for invariant subspaces on convex domains,” Izv. Ross. Akad. Nauk Ser. Mat., 68:2 (2004), 71–136; English transl.: Russian Acad. Sci. Izv. Math., 68: 2 (2004), 291–353.
5. [5]
G. Valiron, “Sur les solutions des équations différentielles linéaires d’ordre infini et à coefficients constants,” Ann. Sci. Ecole Norm. Sup., 46:1 (1929), 25–53.
6. [6]
L. Schwartz, “Théorie générale des fonctions moyenne-périodique,” Ann. Math., 48:4 (1947), 857–929.
7. [7]
A. O. Gelfond, “Linear differential equations of infinite order with constant coefficients and asymptotic periods of entire functions,” Trudy Mat. Inst. Steklov, 38 (1951), 42–67.
8. [8]
D. G. Dickson, “Expansions in series of solutions of linear difference-differential and infinite order differential equations with constant coefficients,” Mem. Amer. Math. Soc., 1957:23 (1957), 1–72.Google Scholar
9. [9]
B. Ya. Levin, “On some applications of the Lagrange interpolation series to the theory of entire functions,” Mat. Sb., 8:3 (1940), 437–454.Google Scholar
10. [10]
Yu. F. Korobeinik, “Interpolation problems, nontrivial expansions of zero, and representing systems,” Izv. Akad. Nauk SSSR Ser. Mat., 44:5 (1980), 1066–1114; English transl.: Math. USSR-Izv., 17:2 (1981), 299–337.
11. [11]
Yu. F. Korobeinik, “Representing systems,” Uspekhi Mat. Nauk, 36:1 (1981), 73–126; English transl.: Russian Math. Surveys, 36:1 (1981), 75–137.
12. [12]
A. V. Bratiščev and Yu. F. Korobeinik, “The multiple interpolation problem in the spaces of entire functions of given proximate order,” Izv. Akad. Nauk SSSR Ser. Mat., 40:5 (1976), 1102–1127; English transl.: Math. USSR-Izv., 10:5 (1976), 1049–1074.
13. [13]
A. V. Bratishchev, Köthe bases, entire functions, and their applications [in Russian], Doctoral Dissertation (Physics-Mathematics), Rostov-on-Don, 1995.Google Scholar
14. [14]
A. S. Krivosheev, “A criterion for the fundamental principle for invariant subspaces,” Dokl. Ross. Akad. Nauk, 389:4 (2003), 457–460.
15. [15]
A. F. Leont’ev, Entire Functions. Exponential Series [in Russian], Nauka, Moscow, 1983.Google Scholar
16. [16]
K. Leichtweiss, Konvexe Mengen, Springer-Verlag, Berlin-New York, 1980.
17. [17]
O. A. Krivosheeva, “Series of exponential monomials on complex domains,” Vestnik UGATU. Matem., 9:3(21) (2007), 96–103.Google Scholar
18. [18]
O. A. Krivosheeva, “Singular points of the sum of an exponential series on the boundary of the domain of convergence,” Ufimsk. Mat. Zh., 1:4 (2009), 78–109.Google Scholar
19. [19]
V. V. Napalkov and O. A. Krivosheeva, “Abel and Cauchy-Hadamard theorems for series of exponential monomials,” Dokl. Ross. Akad. Nauk, 432:5 (2010), 594–596; English transl.: Russian Acad. Sci. Dokl., 432:5 (2010), 449–451.
20. [20]
A. Robertson and W. Robertson, Topological Vector Spaces, Cambridge Univ. Press, New York, 1964.
21. [21]
P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Springer-Verlag, New York, 1986.
22. [22]
B. Ya. Levin, Distribution of Zeroes of Entire Functions, Transl. Math. Monographs Series, vol. 5, Amer. Math. Soc., Providence, RI, 1964.Google Scholar