Functional Analysis and Its Applications

, Volume 46, Issue 2, pp 147–151 | Cite as

A system of three three-dimensional charged quantum particles: Asymptotic behavior of the eigenfunctions of the continuous spectrum at infinity

  • V. S. Buslaev
  • S. B. Levin
Brief Communications


To our knowledge, there are no expressions (not necessarily rigorously proved mathematically) for the eigenfunctions of a system of three or more charged quantum particles. For a system of three such identical particles, we suggest an asymptotic formula describing the behavior of eigenfunctions at infinity in the configuration space.

Key words

partial differential equations mathematical physics quantum scattering theory in the system of three charged particles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. D. Faddeev, “Mathematical questions in the quantum theory of scattering for a system of three particles,” Trudy Mat. Inst. Steklov, 69 (1963).Google Scholar
  2. [2]
    M. Brauner, J. S. Briggs, and H. Klar, J. Phys. B, 22:14 (1989), 2265–2287.CrossRefGoogle Scholar
  3. [3]
    V. S. Buslaev, S. B. Levin, P. Neittaannmäki, and T. Ojala, J. Phys. A, 43:28 (2010), 285205.MathSciNetCrossRefGoogle Scholar
  4. [4]
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, San Diego, CA, 2000.MATHGoogle Scholar
  5. [5]
    V. S. Buslaev, in: Problems in Mathematical Physics (Spectral Theory and Wave Processes) [in Russian], vol. 1, Izdat. Leningrad Univ., Leningrad, 1966, 82–101.Google Scholar
  6. [6]
    L. D. Faddeev and S. P. Merkuriev, Quantum Scattering Theory for Several Particle Systems, Kluwer Acad. Publ. Group, Dordrecht, 1993.MATHGoogle Scholar
  7. [7]
    C. R. Garibotti and J. E. Miraglia, Phys. Rev. A, 21:2 (1980), 572–580.CrossRefGoogle Scholar
  8. [8]
    A. L. Godunov, Sh. D. Kunikeev, V. N. Mileev, and V. S. Senashenko, in: Proc. 13th Int. Conf. on Physics of Electronic and Atomic Collisions (Berlin) (ed. J. Eichler), North Holland, Amsterdam, 1983, Abstracts p. 380.Google Scholar
  9. [9]
    E. O. Alt and A. M. Mukhamedzhanov, Pis’ma ZhETF, 56:9 (1992), 450–454; English transl.: JETP Lett., 56: 9 (1992), 436–439.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mathematical and Computational PhysicsSt-Petersburg State UniversitySt-PetersburgRussia

Personalised recommendations