Advertisement

Functional Analysis and Its Applications

, Volume 45, Issue 2, pp 149–153 | Cite as

A criterion for the unconditional basis property of eigenvectors for finite-rank perturbations of Volterra operators

  • G. M. Gubreev
  • A. A. Tarasenko
Brief Communications
  • 66 Downloads

Abstract

A criterion for the unconditional basis property of eigenvectors for finite-rank perturbations of Volterra operators is given. Considerations are based on functional models for non-self-adjoint operators and on the technique of the Muckenhoupt matrix weights.

Key words

unconditional basis non-self-adjoint operators entire inner matrix functions Muckenhoupt matrix weights 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. M. Gubreev and Yu. D. Latushkin, Funkts. Anal. Prilozhen., 42:3 (2008), 85–89; English transl.: Functional Anal. Appl., 42:3 (2008), 234–238.MathSciNetGoogle Scholar
  2. [2]
    S. Treil and A. Volberg, J. Funct. Anal., 143:2 (1997), 269–308.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    M. S. Brodskii, Triangular and Jordan Representations of Linear Operators [in Russian], Nauka, Moscow, 1969.Google Scholar
  4. [4]
    B. Sz.-Nagy and C. Foiaş, Analyse harmonique des opérateurs de l’espace de Hilbert, Masson et Cie, Paris; Académiai Kiadó, Budapest, 1967.Google Scholar
  5. [5]
    J. B. Garnett, Bounded Analytic Functions, Academic Press, New York-London, 1981.MATHGoogle Scholar
  6. [6]
    N. K. Nikol’skii, in: Theory of Linear Operators and Functional Spaces [in Russian], Nauka, Novosibirsk, 1977, 240–282.Google Scholar
  7. [7]
    S. R. Treil’, Dokl. Akad. Nauk SSSR, 288:2 (1986), 308–312.MathSciNetGoogle Scholar
  8. [8]
    N. K. Nikol’skii and B. S. Pavlov, Izv. Akad. Nauk SSSR, Ser. Mat., 34:1 (1970), 90–133; English transl.: Math. USSR Izv., 4:1 (1970), 91–138.MathSciNetGoogle Scholar
  9. [9]
    B. S. Pavlov, Dokl. Akad. Nauk SSSR, 247:1 (1979), 37–40; English transl.: Sov. Math. Dokl., 20 (1979), 655–659.MathSciNetGoogle Scholar
  10. [10]
    S. A. Avdonin and S. A. Ivanov, Families of Exponentials, Cambridge Univ. Press, Cambridge, 1995.MATHGoogle Scholar
  11. [11]
    M. M. Dzhrbashyan, Izv. Akad. Nauk Arm. SSR, 5:2 (1970), 71–96.MATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.National Technical University of PoltavaPoltavaUkraine
  2. 2.Universidad Autonoma del Estado de HidalgoMexicoMexico

Personalised recommendations