Advertisement

Towards Nikishin’s theorem on the almost sure convergence of rearrangements of functional series

  • S. Levental
  • V. Mandrekar
  • S. A. Chobanyan
Article

Abstract

Necessary and sufficient conditions are found for the almost sure convergence of almost all simple rearrangements of a series of Banach space valued random variables. The results go back to Nikishin’s well-known theorem on the existence of an almost surely convergent rearrangement of a numerical random series. An example is also given of a numerical random series with general term tending to zero almost surely such that this series converges in probability and any its rearrangement diverges almost surely.

Key words

rearrangement of a series in a Banach space almost sure convergence k-simple permutation Nikishin’s theorem 

References

  1. [1]
    “Problem 106 (S. Banach),” in: The Scottish Book. Mathematics from Scottish Cafe (ed. R. D. Mauldin), Birkhäuser, Boston-Basel-Stuttgart, 1981.Google Scholar
  2. [2]
    W. Banaszczyk, “Steinitz theorem on rearrangement of series for nuclear spaces,” J. Reine Angew. Math., 403 (1990), 187–200.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    M.-J. Chasco and S. A. Chobanyan, “On rearrangements of series in locally convex spaces,” Mich. Math. J., 44:3 (1997), 607–617.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    S. A. Chobanyan, “Structure of the set of sums of a conditionally convergent series in a normed space,” Matem. Sb., 128(170):1(9) (1985), 50–65; English transl.: Math USSR Sb., 56:1 (1987), 49–62.MathSciNetGoogle Scholar
  5. [5]
    S. A. Chobanyan, “Convergence a.s. of rearranged random series in Banach spaces and associated inequalities,” in: Probability in Banach Spaces, 9, Proc. of 9th International Conference on Probability in Banach Spaces, Sandbjerg, 1993, Prog. Probab., vol. 35, Birkhäuser, Boston, MA, 1994, 3–29.Google Scholar
  6. [6]
    S. Chobanyan and G. Giorgobiani, “A problem on rearrangements of summands in normed spaces and Rademacher sums,” in: Probability Theory on Vector Spaces, IV, Proc. of Conference, Lancut, 1987, Lecture Notes of Math., vol. 1391, Springer-Verlag, Berlin, 33–46.Google Scholar
  7. [7]
    S. Chobanyan and G. Giorgobiani, “Almost sure permutational convergence of vector random series and Kolmogorov’s problem,” in: New Trends in Probability and Statistics, Proc. of 23rd Bakuriani Colloq., Bakuriani 1990, vol. 1, VSP, Utrecht, 1991, 93–105.Google Scholar
  8. [8]
    S. Chobanyan, S. Levental, and V. Mandrekar, “Prokhorov blocks and strong law of large numbers under rearrangements,” J. Theoret. Probab., 17:3 (2004), 647–672.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    S. Chobanyan and V. Mandrekar, “Almost everywhere convergence and SLLN under rearrangements,” in: Stochastic Processes and Related Topics, Trends Math., Birkhäuser, Boston, 1998, 25–34.Google Scholar
  10. [10]
    S. Chobanyan and V. Mandrekar, “On Kolmogorov SLLN under rearrangements for “orthogonal” random variables in a B-space,” J. Theoret. Probab., 13:1 (2000), 135–139.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    V. P. Fonf, “Conditionally convergent series in a uniformly smooth Banach space,” Mat. Zametki, 11:2 (1972), 209–214; English transl.: Math. Notes, 11:2 (1972), 129–132.MathSciNetGoogle Scholar
  12. [12]
    A. Garsia, “Existence of almost everywhere convergent rearrangements for Fourier series of L 2 functions,” Ann. of Math., 79 (1964), 623–629.CrossRefMathSciNetGoogle Scholar
  13. [13]
    A. Garsia, Topics in Almost Everywhere Convergence, Markham Publ. Co., Chicago, 1970.MATHGoogle Scholar
  14. [14]
    Z. G. Gorgadze, V. I. Tarieladze, and S. A. Chobanyan, “Gaussian covariances in Banach sublattices of the space L 0(T, Σ, ν),” Dokl. Acad. Nauk SSSR, 241:3 (1978), 528–531; English transl.: Sov. Math. Dokl., 19 (1978), 885–888.MathSciNetGoogle Scholar
  15. [15]
    M. I. Kadets, “On conditionally convergent series in L p,” Uspekhi Mat. Nauk, 9:1 (1954), 107–109.MATHGoogle Scholar
  16. [16]
    M. I. Kadets and V. M. Kadets, Series in Banach Spaces: Conditional and Unconditional Convergence, Birkhäuser, Basel, 1997.MATHGoogle Scholar
  17. [17]
    B. S. Kashin and A. A. Saakyan, Orthogonal Series, Transl. of Math. Monographs, vol. 75, Amer. Math. Soc., Providence, RI, 1989.Google Scholar
  18. [18]
    S. V. Konyagin, “On uniformly convergent rearrangements of trigonometric Fourier series,” Sovremennaya Matematika, Fundamental’nye Napravleniya, 25 (2007), 80–87; English transl.: J. Math. Sci., 155:1 (2008), 81–88.MathSciNetGoogle Scholar
  19. [19]
    M. Ledoux and M. Talagrand, Probability in Banach Spaces. Isometry and Processes, Springer-Verlag, Berlin, 1991.Google Scholar
  20. [20]
    S. Levental, “A maximal inequality for real numbers with application to exchangeable random variables,” Teor. Veroyatn. Primen., 45:3 (2000), 615–621; English transl.: Theory Probab. Appl., 45:3 (2001), 525–532.MathSciNetGoogle Scholar
  21. [21]
    W. Linde and A. Pietsch, “Mappings of Gaussian cylindrical measures in Banach spaces,” Teor. Veroyatn. Primen., 19 (1974), 472–487; English transl.: Theory Probab. Appl., 19:3 (1975), 445–460.MathSciNetGoogle Scholar
  22. [22]
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, II, Springer-Verlag, Berlin-Heidelberg-New York, 1979.MATHGoogle Scholar
  23. [23]
    R. P. Maleev, “On conditionally convergent series in some Banach lattices [in Russian],” C. R. Acad. Bulgare Sci., 32:8 (1979), 1015–1018.MATHMathSciNetGoogle Scholar
  24. [24]
    B. Maurey, “Type et cotype dans les espaces munis de structures locales inconditionelles,” in: Séminaire Maurey-Schwartz 1973–1974, Centre Math., École Polytech., Paris, 1974, Exp. 24, 25.Google Scholar
  25. [25]
    B. Maurey and G. Pisier, “Remarques sur léxposé de P. Assouad ‘Espaces p-lisses, réarrangements’,” in: Séminaire Maurey-Schwartz 1974–1975, Centre Math., École Polytech., Paris, 1975, Annexe 1.Google Scholar
  26. [26]
    E. M. Nikishin, “The convergence of rearrangements of series of functions,” Math. Zametki, 1:2 (1967), 129–136; English transl.: Math. Notes, 1:2 (1967), 85–90.Google Scholar
  27. [27]
    E. M. Nikishin, “Rearrangements of series in L p,” Mat. Zametki, 14:1 (1973), 31–38; English transl.: Math. Notes, 14 (1973), 570–574.MATHMathSciNetGoogle Scholar
  28. [28]
    D. V. Pecherskii, “Rearrangements of series in Banach spaces and arrangements of signs,” Matem. Sb., 135(177):1 (1988), 24–35; English transl.: Math. USSR Sb., 63:1 (1989), 23–33.MathSciNetGoogle Scholar
  29. [29]
    Sz. Gy. Révész, “Rearrangement of Fourier series and Fourier series whose terms have random signs,” Acta Math. Hungar., 63:4 (1994), 395–402.CrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    E. Steinitz, “Bedingt konvergente Reihen und konvexe Systeme,” J. Reine Ang. Mathematik, 143 (1913), 128–175; 144 (1914), 1–40; 1916, 1–52.CrossRefMATHGoogle Scholar
  31. [31]
    S. L. Troyanskii, “Conditionally convergent series and certain F-spaces,” Teor. Funktsii Funktsional. Anal. i Prilozhen., 5 (1967), 102–107.Google Scholar
  32. [32]
    N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, Probability distributions on Banach spaces, Math. and Its Applications (Soviet Series), vol. 14, D. Reidel Publishing Company, Dordrecht, 1987.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • S. Levental
    • 1
  • V. Mandrekar
    • 1
  • S. A. Chobanyan
    • 2
  1. 1.Michigan State UniversityEast Gull Lake DriveUSA
  2. 2.Muskhelishvili Institute of Computational MathematicsTbilisiUSA

Personalised recommendations