Skip to main content
Log in

Spectral multiplicities of infinite measure preserving transformations

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

Each set E ⊂ ℕ is realized as the set of essential values of the multiplicity function of the Koopman operator for an ergodic conservative infinite measure preserving transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aaronson, An Introduction to Infinite Ergodic Theory, Amer. Math. Soc., Providence, RI, 1997.

    MATH  Google Scholar 

  2. T. Adams, N. Friedman, and C. E. Silva, “Rank-one power weakly mixing non-singular transformations,” Ergodic Theory Dynam. Systems, 21:5 (2001), 1321–1332.

    Article  MATH  MathSciNet  Google Scholar 

  3. O. N. Ageev, “On ergodic transformations with homogeneous spectrum,” J. Dynam. Control Systems, 5:1 (1999), 149–152.

    Article  MATH  MathSciNet  Google Scholar 

  4. O. N. Ageev, “The homogeneous spectrum problem in ergodic theory,” Invent. Math., 160:2 (2005), 417–446.

    Article  MATH  MathSciNet  Google Scholar 

  5. O. N. Ageev, “Mixing with staircase multiplicity function,” Ergodic Theory Dynam. Systems, 28:6 (2008), 1687–1700.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. M. Vershik and I. P. Kornfeld, “General ergodic theory of transformation groups with invariant measure. Chap. 4. Periodic approximations and their applications. Ergodic theorems, spectral and entropy theory for general groups actions,” in: Dynamical Systems-2, Itogi Nauki i Tekhniki, Sovremennye Problemy Matematiki, Fundametal’nye napravleniya [in Russian], vol. 2, VINITI, Moscow, 1985, 70–89.

    Google Scholar 

  7. A. I. Danilenko, “Funny rank one weak mixing for nonsingular Abelian actions,” Israel J. Math., 121 (2001), 29–54.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. I. Danilenko, “Explicit solution of Rokhlin’s problem on homogeneous spectrum and applications,” Ergodic Theory Dynam. Systems, 26:5 (2006), 1467–1490.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. I. Danilenko, “(C, F)-actions in ergodic theory,” in: Geometry and Dynamics of Groups and Spaces, Progr. Math., vol. 265, Birkhäuser, Basel, 2008, 325–351.

    Chapter  Google Scholar 

  10. A. I. Danilenko, “On new spectral multiplicities for ergodic maps,” Studia Math., 197:1 (2010), 57–68.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. I. Danilenko and C. E. Silva, “Multiple and polynomial recurrence for Abelian actions in infinite measure,” J. London Math. Soc., 69:1 (2004), 183–200.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. I. Danilenko and C. E. Silva, “Ergodic theory: non-singular transformations,” in: Encyclopedia of Complexity and Systems Science, Springer-Verlag, 2009, 3055–3083.

  13. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981.

    MATH  Google Scholar 

  14. G. R. Goodson, J. Kwiatkowski, M. Lemańczyk, and P. Liardet, “On the multiplicity function of ergodic group extensions of rotations,” Studia Math., 102:2 (1992), 157–174.

    MATH  MathSciNet  Google Scholar 

  15. K. Inoue, “Isometric extensions and multiple recurrence of infinite measure preserving systems,” Israel J. Math., 140 (2004), 245–252.

    Google Scholar 

  16. A. del Junco, “A simple map with no prime factors,” Israel J. Math., 104 (1998), 301–320.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Kakutani and W. Parry, “Infinite measure preserving transformations with mixing,” Bull. Amer. Math. Soc., 69 (1963), 752–756.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. B. Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, University Lecture Series, vol. 30, Amer. Math. Soc., Providence, RI, 2003.

    Google Scholar 

  19. A. Katok and M. Lemańczyk, “Some new cases of realization of spectral multiplicity function for ergodic transformations,” Fund. Math., 206 (2009), 185–215.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Kwiatkowski, Jr., and M. Lemańczyk, “On the multiplicity function of ergodic group extensions. II,” Studia Math., 116:3 (1995), 207–215.

    MATH  MathSciNet  Google Scholar 

  21. V. I. Oseledec, “On the spectrum of ergodic automorphisms,” Dokl. Akad. Nauk SSSR, 168 (1966), 1009–1011; English transl.: Soviet Math. Dokl., 7 (1966), 776–779.

    MathSciNet  Google Scholar 

  22. E. A. Robinson, “Ergodic measure-preserving transformations with arbitrary finite spectral multiplicities,” Invent. Math., 72:2 (1983), 299–314.

    Article  MATH  MathSciNet  Google Scholar 

  23. E. A. Robinson, “Transformations with highly nonhomogeneous spectrum of finite multiplicity,” Israel J. Math., 56 (1986), 75–88.

    Article  MATH  MathSciNet  Google Scholar 

  24. V. V. Ryzhikov, “Transformations having homogeneous spectra,” J. Dynam. Control Systems, 5:1 (1999), 145–148.

    Article  MATH  MathSciNet  Google Scholar 

  25. V. V. Ryzhikov, “Weak limits of powers, simple spectrum of symmetric products, and rank-one mixing constructions,” Mat. Sb., 198:5 (2007), 137–159; English transl.: Russian Acad. Sci. Sb. Math., 198:5 (2007), 733–754.

    MathSciNet  Google Scholar 

  26. V. V. Ryzhikov, “Spectral multiplicities and asymptotic operator properties of actions with invariant measure,” Mat. Sb., 200:12 (2009), 107–120; English transl.: Russian Acad. Sci. Sb. Math., 200:12 (2009), 1833–1845.

    MathSciNet  Google Scholar 

  27. K. Schmidt, Cocycles on Ergodic Transformation Groups, Macmillan Lectures in Math., vol. 1, Macmillan Company of India, Delhi, 1977.

    Google Scholar 

  28. A. M. Stepin, “Spectral properties of generic dynamical systems,” Izv. Akad. Nauk SSSR Ser. Mat., 50:4 (1986), 801–834; English transl.: Math. USSR Izv., 29:1 (1987), 159–192.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Danilenko.

Additional information

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 44, No. 3, pp. 1–13, 2010

Original Russian Text Copyright © by A. I. Danilenko and V. V. Ryzhikov

The second named author acknowledges the support of the program “Leading Scientific Schools” (grants nos. 3038.2008.1 and 8508.2010.1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilenko, A.I., Ryzhikov, V.V. Spectral multiplicities of infinite measure preserving transformations. Funct Anal Its Appl 44, 161–170 (2010). https://doi.org/10.1007/s10688-010-0021-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-010-0021-2

Key words

Navigation