Functional Analysis and Its Applications

, Volume 44, Issue 3, pp 161–170 | Cite as

Spectral multiplicities of infinite measure preserving transformations



Each set E ⊂ ℕ is realized as the set of essential values of the multiplicity function of the Koopman operator for an ergodic conservative infinite measure preserving transformation.

Key words

ergodic transformation σ-finite measure spectral multiplicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Aaronson, An Introduction to Infinite Ergodic Theory, Amer. Math. Soc., Providence, RI, 1997.MATHGoogle Scholar
  2. [2]
    T. Adams, N. Friedman, and C. E. Silva, “Rank-one power weakly mixing non-singular transformations,” Ergodic Theory Dynam. Systems, 21:5 (2001), 1321–1332.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    O. N. Ageev, “On ergodic transformations with homogeneous spectrum,” J. Dynam. Control Systems, 5:1 (1999), 149–152.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    O. N. Ageev, “The homogeneous spectrum problem in ergodic theory,” Invent. Math., 160:2 (2005), 417–446.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    O. N. Ageev, “Mixing with staircase multiplicity function,” Ergodic Theory Dynam. Systems, 28:6 (2008), 1687–1700.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    A. M. Vershik and I. P. Kornfeld, “General ergodic theory of transformation groups with invariant measure. Chap. 4. Periodic approximations and their applications. Ergodic theorems, spectral and entropy theory for general groups actions,” in: Dynamical Systems-2, Itogi Nauki i Tekhniki, Sovremennye Problemy Matematiki, Fundametal’nye napravleniya [in Russian], vol. 2, VINITI, Moscow, 1985, 70–89.Google Scholar
  7. [7]
    A. I. Danilenko, “Funny rank one weak mixing for nonsingular Abelian actions,” Israel J. Math., 121 (2001), 29–54.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. I. Danilenko, “Explicit solution of Rokhlin’s problem on homogeneous spectrum and applications,” Ergodic Theory Dynam. Systems, 26:5 (2006), 1467–1490.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. I. Danilenko, “(C, F)-actions in ergodic theory,” in: Geometry and Dynamics of Groups and Spaces, Progr. Math., vol. 265, Birkhäuser, Basel, 2008, 325–351.CrossRefGoogle Scholar
  10. [10]
    A. I. Danilenko, “On new spectral multiplicities for ergodic maps,” Studia Math., 197:1 (2010), 57–68.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    A. I. Danilenko and C. E. Silva, “Multiple and polynomial recurrence for Abelian actions in infinite measure,” J. London Math. Soc., 69:1 (2004), 183–200.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. I. Danilenko and C. E. Silva, “Ergodic theory: non-singular transformations,” in: Encyclopedia of Complexity and Systems Science, Springer-Verlag, 2009, 3055–3083.Google Scholar
  13. [13]
    H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981.MATHGoogle Scholar
  14. [14]
    G. R. Goodson, J. Kwiatkowski, M. Lemańczyk, and P. Liardet, “On the multiplicity function of ergodic group extensions of rotations,” Studia Math., 102:2 (1992), 157–174.MATHMathSciNetGoogle Scholar
  15. [15]
    K. Inoue, “Isometric extensions and multiple recurrence of infinite measure preserving systems,” Israel J. Math., 140 (2004), 245–252.Google Scholar
  16. [16]
    A. del Junco, “A simple map with no prime factors,” Israel J. Math., 104 (1998), 301–320.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    S. Kakutani and W. Parry, “Infinite measure preserving transformations with mixing,” Bull. Amer. Math. Soc., 69 (1963), 752–756.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    A. B. Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, University Lecture Series, vol. 30, Amer. Math. Soc., Providence, RI, 2003.Google Scholar
  19. [19]
    A. Katok and M. Lemańczyk, “Some new cases of realization of spectral multiplicity function for ergodic transformations,” Fund. Math., 206 (2009), 185–215.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    J. Kwiatkowski, Jr., and M. Lemańczyk, “On the multiplicity function of ergodic group extensions. II,” Studia Math., 116:3 (1995), 207–215.MATHMathSciNetGoogle Scholar
  21. [21]
    V. I. Oseledec, “On the spectrum of ergodic automorphisms,” Dokl. Akad. Nauk SSSR, 168 (1966), 1009–1011; English transl.: Soviet Math. Dokl., 7 (1966), 776–779.MathSciNetGoogle Scholar
  22. [22]
    E. A. Robinson, “Ergodic measure-preserving transformations with arbitrary finite spectral multiplicities,” Invent. Math., 72:2 (1983), 299–314.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    E. A. Robinson, “Transformations with highly nonhomogeneous spectrum of finite multiplicity,” Israel J. Math., 56 (1986), 75–88.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    V. V. Ryzhikov, “Transformations having homogeneous spectra,” J. Dynam. Control Systems, 5:1 (1999), 145–148.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    V. V. Ryzhikov, “Weak limits of powers, simple spectrum of symmetric products, and rank-one mixing constructions,” Mat. Sb., 198:5 (2007), 137–159; English transl.: Russian Acad. Sci. Sb. Math., 198:5 (2007), 733–754.MathSciNetGoogle Scholar
  26. [26]
    V. V. Ryzhikov, “Spectral multiplicities and asymptotic operator properties of actions with invariant measure,” Mat. Sb., 200:12 (2009), 107–120; English transl.: Russian Acad. Sci. Sb. Math., 200:12 (2009), 1833–1845.MathSciNetGoogle Scholar
  27. [27]
    K. Schmidt, Cocycles on Ergodic Transformation Groups, Macmillan Lectures in Math., vol. 1, Macmillan Company of India, Delhi, 1977.Google Scholar
  28. [28]
    A. M. Stepin, “Spectral properties of generic dynamical systems,” Izv. Akad. Nauk SSSR Ser. Mat., 50:4 (1986), 801–834; English transl.: Math. USSR Izv., 29:1 (1987), 159–192.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Institute for Low Temperature Physics and EngineeringNational Academy of Sciences of UkraineKievUkraine
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations