Skip to main content
Log in

On the Hersch-Payne-Schiffer inequalities for Steklov eigenvalues

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We prove that the Hersch-Payne-Schiffer isoperimetric inequality for the nth nonzero Steklov eigenvalue of a bounded simply connected planar domain is sharp for all n ⩾ 1. The equality is attained in the limit by a sequence of simply connected domains degenerating into a disjoint union of n identical disks. Similar results are obtained for the product of two consecutive Steklov eigenvalues. We also give a new proof of the Hersch-Payne-Schiffer inequality for n = 2 and show that it is strict in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Ashbaugh and R. D. Benguria, “Isoperimetric inequalities for eigenvalues of the Laplacian,” in: Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon’s 60th Birthday, Proc. Sympos. Pure Math., vol. 76, Part 1, Amer. Math. Soc., Providence, RI, 2007, 105–139.

    Google Scholar 

  2. C. Bandle, “Über des Stekloffsche Eigenwertproblem: Isoperimetrische Ungleichungen für symmetrische Gebiete,” Z. Angew. Math. Phys., 19 (1968), 627–237.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston, 1980.

    MATH  Google Scholar 

  4. F. Brock, “An isoperimetric inequality for eigenvalues of the Stekloff problem,” Z. Angew. Math. Mech., 81:1 (2001), 69–71.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, Birkhäuser, Boston, MA, 2005.

    MATH  Google Scholar 

  6. D. Bucur and A. Henrot, “Minimization of the third eigenvalue of the Dirichlet Laplacian,” Proc. Roy. Soc. London, Ser. A, 456:1996 (2000), 985–996.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Courant, “Beweis des Satzes, da und gegebener Spannung die kreisförmige den tiefsten Grundton besitzt,” Math. Z., 1:2–3 (1918), 321–328.

    Article  MathSciNet  Google Scholar 

  8. M. Delfour and J.-P. Zolěsio, Shapes and Geometries. Analysis, Differential Calculus, and Optimization, Advances in Design and Control, vol. 4, SIAM, Philadelphia, 2001.

    Google Scholar 

  9. Z. Ding, “A proof of the trace theorem of Sobolev spaces on Lipschitz domains,” Proc. Amer. Math. Soc., 124:2 (1996), 591–600.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Dittmar, “Sums of reciprocal Stekloff eigenvalues,” Math. Nachr., 268 (2004), 44–49.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Edward, “An inequality for Steklov eigenvalues for planar domains,” Z. Angew. Math. Phys., 45:3 (1994), 493–496.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Faber, “Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt,” Sitzungberichte der mathematischphysikalischen Klasse der Bayerischen Akademie der Wissenschaften zu München Jahrgang, 1923, 169–172.

  13. D. W. Fox and J. P. Kuttler, “Sloshing frequencies,” Z. Angew. Math. Phys., 34:5 (1983), 668–696.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Girouard, N. Nadirashvili, and I. Polterovich, “Maximization of the second positive Neumann eigenvalue for planar domains,” J. Differential Geom., 83:3 (2009), 637–662.

    MATH  MathSciNet  Google Scholar 

  15. R. Hempel, L. Seco, and B. Simon, “The essential spectrum of Neumann Laplacians on some bounded singular domains,” J. Funct. Anal., 102:2 (1991), 448–483.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Henrot, Extremum problems for eigenvalues of elliptic operators, Birkhäuser, Basel, 2006.

    MATH  Google Scholar 

  17. A. Henrot and M. Pierre, Variation et optimisation de formes, Springer-Verlag, Berlin, 2005.

    MATH  Google Scholar 

  18. A. Henrot, G. Philippin, and A. Safoui, Some isoperimetric inequalities with application to the Stekloff problem, http://arxiv.org/abs/0803.4242.

  19. J. Hersch, “Quatre propriétés isopérimétriques de membranes sphériques homog`enes,” C. R. Acad. Sci. Paris Sér. A-B, 270 (1970), A1645–A1648.

    MathSciNet  Google Scholar 

  20. J. Hersch, L. E. Payne, and M. M. Schiffer, “Some inequalities for Stekloff eigenvalues,” Arch. Rat. Mech. Anal., 57 (1974), 99–114.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Jimbo and Y. Morita, “Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels,” Comm. Partial Differential Equations, 17:3–4 (1992), 523–552.

    MATH  MathSciNet  Google Scholar 

  22. E. Krahn, “Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises,” Math. Ann., 94:1 (1925), 97–100.

    Article  MATH  MathSciNet  Google Scholar 

  23. E. Krahn, “Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen,” Acta Comm. Unic. Dorpat, A9 (1926), 1–44.

    Google Scholar 

  24. J. R. Kuttler and V. G. Sigillito, “An inequality of a Stekloff eigenvalue by the method of defect,” Proc. Amer. Math. Soc., 20 (1969), 357–360.

    Article  MATH  MathSciNet  Google Scholar 

  25. N. Nadirashvili, “Isoperimetric inequality for the second eigenvalue of a sphere,” J. Differential Geom., 61:2 (2002), 335–340.

    MATH  MathSciNet  Google Scholar 

  26. L. Payne, “Isoperimetric inequalities and their applications,” SIAM Rev., 9:3 (1967), 453–488.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. W. S. Rayleigh, The Theory of Sound, vol. 1, McMillan, London, 1877.

    Google Scholar 

  28. W. Stekloff, “Sur les problèmes fondamentaux de la physique mathématique,” Ann. Sci. Ecole Norm. Sup., 19 (1902), 455–490.

    MathSciNet  Google Scholar 

  29. G. Szegő, “Inequalities for certain eigenvalues of a membrane of given area,” J. Rational Mech. Anal., 3 (1954), 343–356.

    MathSciNet  Google Scholar 

  30. M. E. Taylor, Partial Differential Equations II. Qualitative Studies of Linear Equations, Applied Mathematical Sciences, vol. 116, Springer-Verlag, New York, 1996.

    Google Scholar 

  31. G. Uhlmann and J. Sylvester, “The Dirichlet to Neumann map and applications,” in: Inverse Problems in Partial Differential Equations (Arcata, CA, 1989), SIAM, Philadelphia, PA, 1990, 101–139.

    Google Scholar 

  32. H. F. Weinberger, “An isoperimetric inequality for the N-dimensional free membrane problem,” J. Rational Mech. Anal., 5 (1956), 633–636.

    MathSciNet  Google Scholar 

  33. R. Weinstock, “Inequalities for a classical eigenvalue problem,” J. Rational Mech. Anal., 3 (1954), 745–753.

    MathSciNet  Google Scholar 

  34. A. Wolf and J. Keller, “Range of the first two eigenvalues of the Laplacian,” Proc. Roy. Soc. London, Ser. A, 447 (1994), 397–412.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Girouard.

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 44, No. 2, pp. 33–47, 2010

Original Russian Text Copyright © by A. Girouard and I. Polterovich

The second author was supported by NSERC, FQRNT, and Canada Research Chairs Program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girouard, A., Polterovich, I. On the Hersch-Payne-Schiffer inequalities for Steklov eigenvalues. Funct Anal Its Appl 44, 106–117 (2010). https://doi.org/10.1007/s10688-010-0014-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-010-0014-1

Key words

Navigation