Advertisement

Functional Analysis and Its Applications

, Volume 41, Issue 1, pp 31–41 | Cite as

On the spectrum of a vector Schrödinger operator

  • R. S. Ismagilov
  • A. G. Kostyuchenko
Article

Abstract

We consider the asymptotics of the spectrum of a Sturm-Liouville operator acting on a space of vector functions and show that this asymptotics is affected by “rotation” of eigenvectors of the potential. A similar result is obtained for a vector Schrödinger operator.

Key words

Schrödinger operator self-adjointness discrete spectrum counting function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. B. Lidskii, “On the number of square integrable solutions of a system of differential equations,” Dokl. Akad. Nauk SSSR, 95:1 (1954), 217–220.MathSciNetGoogle Scholar
  2. [2]
    A. M. Molchanov, “On conditions for the discreteness of the spectrum of self-adjoint differential operators of second order,” Trudy Moscov. Mat. Obshch., 2 (1953), 169–200.Google Scholar
  3. [3]
    E. C. Titchmarsh, Eigenfunction Expansions Associated with Second Order Differential Equations, At the Clarendon Press, Oxford, 1946.MATHGoogle Scholar
  4. [4]
    B. M. Levitan and G. A. Suvorchenkova, “Sufficient conditions for the discreteness of the spectrum of the Sturm-Liouville equation with operator coefficients,” Funkts. Anal. Prilozhen., 2:2 (1968), 56–62.Google Scholar
  5. [5]
    A. G. Kostyuchenko and B. M. Levitan, “On the asymptotic behavior of eigenvalues of an operator Sturm-Liouville problem,” Funkts. Anal. Prilozhen., 1:1 (1967), 86–96.Google Scholar
  6. [6]
    A. G. Kostyuchenko, “Distribution of eigenvalues for singular differential operators,” Dokl. Akad. Nauk SSSR, 168:1 (1966), 21–24.MathSciNetGoogle Scholar
  7. [7]
    A. G. Kostyuchenko and I. S. Sargsyan, Distribution of Eigenvalues [in Russian], Nauka, Moscow, 1979.MATHGoogle Scholar
  8. [8]
    I. M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators [in Russian], Fizmatgiz, Moscow, 1963.Google Scholar
  9. [9]
    H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin-New York, 1997.Google Scholar
  10. [10]
    R. S. Ismagilov, “On conditions for semiboundnesses and discretenesses of the spectrum for one-dimensional differential operators,” Dokl. Akad. Nauk SSSR, 140 (1961), 33–36.MathSciNetGoogle Scholar
  11. [11]
    R. S. Ismagilov, “On the asymptotics of the spectrum for a differential operator in a space of vector functions,” Mat. Zametki, 9:6 (1971), 667–676.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • R. S. Ismagilov
    • 1
  • A. G. Kostyuchenko
    • 2
  1. 1.Bauman Moscow State Technical UniversityRussia
  2. 2.Moscow State UniversityRussia

Personalised recommendations