Functional Analysis and Its Applications

, Volume 40, Issue 4, pp 249–263 | Cite as

Admissible majorants for model subspaces, and arguments of inner functions

  • A. D. Baranov
  • V. P. Havin
Open Access


Let Θ be an inner function in the upper half-plane ℂ+ and let K Θ denote the model subspace H 2 ⊖ Θ H 2 of the Hardy space H 2 = H 2(ℂ+). A nonnegative function w on the real line is said to be an admissible majorant for K Θ if there exists a nonzero function fK Θ such that {f} ⩽ w a.e. on ℝ. We prove a refined version of the parametrization formula for K Θ-admissible majorants and simplify the admissibility criterion (in terms of arg Θ) obtained in [8]. We show that, for every inner function Θ, there exist minimal K Θ-admissible majorants. The relationship between admissibility and some weighted approximation problems is considered.

Key words

Hardy space inner function model subspace entire function Beurling-Malliavin theorem 


  1. [1]
    A. D. Baranov, “Polynomials in the de Branges spaces of entire functions,” Ark. Mat., 44:1 (2006), 16–38.CrossRefMathSciNetGoogle Scholar
  2. [2]
    A. Baranov, “Completeness and Riesz bases of reproducing kernels in model subspaces,” Internat. Math. Res. Notices, 2006 (to appear).Google Scholar
  3. [3]
    A. D. Baranov, A. A. Borichev, and V. P. Havin, “Majorants of meromorphic functions with fixed poles,” Indiana Univ. Math. J. (to appear).Google Scholar
  4. [4]
    A. Beurling and P. Malliavin, “On Fourier transforms of measures with compact support,” Acta Math., 107 (1962), 291–309.CrossRefMathSciNetGoogle Scholar
  5. [5]
    L. de Branges, Hilbert Spaces of Entire Functions, Prentice-Hall, Englewood Cliffs, NJ, 1968.MATHGoogle Scholar
  6. [6]
    J. A. Cima and W. T. Ross, The Backward Shift on the Hardy Space, Math. Surveys Monographs, vol. 79, Amer. Math. Soc., Providence, RI, 2000.MATHGoogle Scholar
  7. [7]
    V. Havin and B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, 1994.MATHGoogle Scholar
  8. [8]
    V. P. Havin and J. Mashreghi, “Admissible majorants for model subspaces of H 2. Part I: slow winding of the generating inner function,” Canad. J. Math., 55:6 (2003), 1231–1263.MathSciNetGoogle Scholar
  9. [9]
    V. P. Havin and J. Mashreghi, “Admissible majorants for model subspaces of H 2. Part II: fast winding of the generating inner function,” Canad. J. Math., 55:6 (2003), 1264–1301.MathSciNetGoogle Scholar
  10. [10]
    M. Kaltenbäck and H. Woracek, “Hermite-Biehler functions with zeros close to the imaginary axis,” Proc. Amer. Math. Soc., 133:1 (2005), 245–255.CrossRefMathSciNetGoogle Scholar
  11. [11]
    P. Koosis, The Logarithmic Integral I, Cambridge Stud. Adv. Math., vol. 12, Cambridge University Press, Cambridge, 1988.MATHGoogle Scholar
  12. [12]
    P. Koosis, The Logarithmic Integral II, Cambridge Stud. Adv. Math., vol. 21, Cambridge University Press, Cambridge, 1992.MATHGoogle Scholar
  13. [13]
    P. Koosis, Leçons sur le théorème de Beurling et Malliavin, Les Publications CRM, Montréal, 1996.MATHGoogle Scholar
  14. [14]
    J. Mashreghi, F. L. Nazarov, and V. P. Havin, “The Beurling-Malliavin multiplier theorem: the seventh proof,” Algebra i Analiz, 17:5 (2005), 3–68.MathSciNetGoogle Scholar
  15. [15]
    H. P. McKean, “Some questions about Hardy functions,” in: Linear and Complex Analysis, Problem Book 3, Part I, Lecture Notes in Math., vol. 1573 (eds. V. P. Havin, N. K. Nikolski), 1994, 157–158.Google Scholar
  16. [16]
    N. K. Nikolski, Operators, Functions, and Systems: an Easy Reading. Vol. 1–2, Math. Surveys Monographs, vol. 92–93, Amer. Math. Soc., Providence, RI, 2002.Google Scholar
  17. [17]
    V. V. Peller, Hankel Operators and Their Applications, Springer-Verlag, 2003.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. D. Baranov
    • 1
  • V. P. Havin
    • 1
  1. 1.S.-Petersburg State UniversityRussia

Personalised recommendations