Functional Analysis and Its Applications

, Volume 40, Issue 2, pp 117–125 | Cite as

Noncommutative Riesz theorem and weak Burnside type theorem on twisted conjugacy

  • E. V. Troitsky


The paper consists of two parts. In the first part, we prove a noncommutative analog of the Riesz(— Markov—Kakutani) theorem on representation of functionals on an algebra of continuous functions by regular measures on the underlying space.

In the second part, using this result, we prove a weak version of a Burnside type theorem on twisted conjugacy for arbitrary discrete groups.

Key words

discrete group Reidemeister number twisted conjugacy class Burnside—Frobenius theorem Riesz—Markov—Kakutani theorem Fourier—Stieltjes algebra Dauns—Hofmann theorem Glimm spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Princeton University Press, Princeton, NJ, 1989.Google Scholar
  2. 2.
    J. Dauns and K. H. Hofmann, Representations of Rings by Continuous Sections, Mem. Amer. Math. Soc., Vol. 83, Amer. Math. Soc., Providence, RI, 1968.Google Scholar
  3. 3.
    J. Dixmier, C*-Algebras, North-Holland, Amsterdam, 1982.Google Scholar
  4. 4.
    J. M. G. Fell, “The structure of algebras of operator fields,” Acta Math., 106, 233–280 (1961).MATHMathSciNetGoogle Scholar
  5. 5.
    A. Fel’shtyn, Dynamical Zeta Functions, Nielsen Theory and Reidemeister Torsion, Mem. Amer. Math. Soc., Vol. 147, No. 699, 2000.Google Scholar
  6. 6.
    A. L. Fel’shtyn, “The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite,” Zap. Nauchn. Sem. POMI, 279, No. 6 (Geom. and Topol.), 229–240, 250 (2001).Google Scholar
  7. 7.
    A. Fel’shtyn and E. Troitsky, “A twisted Burnside theorem for countable groups and Reidemeister numbers,” In: Proc. Workshop Noncommutative Geometry and Number Theory (Bonn, 2003, Consani K., Marcolli M., and Manin Yu., eds.), Vieweg, Braunschweig, 2006, pp. 141–154; Preprint MPIM2004-65.Google Scholar
  8. 8.
    A. Fel’shtyn, E. Troitsky, and A. Vershik, Twisted Burnside Theorem for Type II1 Groups: an Example, Preprint 85, Max-Planck-Institut für Mathematik, 2004; to appear in Math. Res. Lett.Google Scholar
  9. 9.
    A. Grothendieck, “Formules de Nielsen-Wecken et de Lefschetz en géométrie algé brique,” In: Séminaire de Géométrie Algébrique du Bois-Marie 1965–66, SGA 5, Lecture Notes in Math., Vol. 569, Springer-Verlag, Berlin, 1977, pp. 407–441.Google Scholar
  10. 10.
    B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math., Vol. 14, Amer. Math. Soc., Providence, RI, 1983.Google Scholar
  11. 11.
    A. A. Kirillov, Elements of the Theory of Representations [in Russian], 2nd ed., Nauka, Moscow, 1978.Google Scholar
  12. 12.
    G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, San Diego, 1990.Google Scholar
  13. 13.
    G. K. Pedersen, C*-Algebras and Their Automorphism Groups, Academic Press, London—New York— San Francisco, 1979.Google Scholar
  14. 14.
    S. Shokranian, The Selberg—Arthur Trace Formula. Based on lectures by James Arthur, Springer-Verlag, Berlin, 1992.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. V. Troitsky
    • 1
  1. 1.Department of Mathematics and MechanicsMoscow State UniversityRussia

Personalised recommendations