Functional Analysis and Its Applications

, Volume 40, Issue 1, pp 56–57 | Cite as

Local minima of lattices and vertices of Klein polyhedra

  • V. A. Bykovskii


We prove that each vertex of a Klein polyhedron of a lattice is a local minimum.

Key words

Klein polyhedron lattice local minimum 


  1. 1.
    F. Klein, Nachr. Ges. Wiss. Göttingen, No. 3, 357–359 (1895).Google Scholar
  2. 2.
    G. F. Voronoi, Collected Papers [in Russian], Vol. 1, Academy of Sciences of the Ukrainian SSR Press, Kiev, 1952.Google Scholar
  3. 3.
    H. Minkowski, Ann. Sci. École Norm. Sup., Ser. 3, 13, No. 2, 41–60 (1896).MATHMathSciNetGoogle Scholar
  4. 4.
    V. I. Arnold, Continued Fractions [in Russian], MCCME, Moscow, 2000.Google Scholar
  5. 5.
    J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959.Google Scholar
  6. 6.
    J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, New York, 1957.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. A. Bykovskii
    • 1
    • 2
  1. 1.Khabarovsk Branch of the Institute of Applied MathematicsRussia
  2. 2.Far East Branch of the Russian Academy of SciencesRussia

Personalised recommendations