, Volume 20, Issue 4, pp 729–749 | Cite as

An Erdös–Révész type law of the iterated logarithm for reflected fractional Brownian motion

Open Access


Let \(B_{H}=\{B_{H}(t):t\in \mathbb R\}\) be a fractional Brownian motion with Hurst parameter H ∈ (0,1). For the stationary storage process \(Q_{B_{H}}(t)=\sup _{-\infty <s\le t}(B_{H}(t)-B_{H}(s)-(t-s))\), t ≥ 0, we provide a tractable criterion for assessing whether, for any positive, non-decreasing function f, \( {\mathbb P(Q_{B_{H}}(t) > f(t)\, \text { i.o.})}\) equals 0 or 1. Using this criterion we find that, for a family of functions f p (t), such that \(z_{p}(t)=\mathbb P(\sup _{s\in [0,f_{p}(t)]}Q_{B_{H}}(s)>f_{p}(t))/f_{p}(t)=\mathcal C(t\log ^{1-p} t)^{-1}\), for some \(\mathcal C>0\), \({\mathbb P(Q_{B_{H}}(t) > f_{p}(t)\, \text { i.o.})= 1_{\{p\ge 0\}}}\). Consequently, with \(\xi _{p} (t) = \sup \{s:0\le s\le t, Q_{B_{H}}(s)\ge f_{p}(s)\}\), for p ≥ 0, \(\lim _{t\to \infty }\xi _{p}(t)=\infty \) and \(\limsup _{t\to \infty }(\xi _{p}(t)-t)=0\) a.s. Complementary, we prove an Erdös–Révész type law of the iterated logarithm lower bound on ξ p (t), i.e., \(\liminf _{t\to \infty }(\xi _{p}(t)-t)/h_{p}(t) = -1\) a.s., p > 1; \(\liminf _{t\to \infty }\log (\xi _{p}(t)/t)/(h_{p}(t)/t) = -1\) a.s., p ∈ (0,1], where h p (t) = (1/z p (t))p loglog t.


Extremes of Gaussian fields Storage processes Fractional Brownian motion Law of the iterated logarithm 

AMS 2000 Subject Classifications

Primary: 60F15 60G70; Secondary: 60G22 



We are thankful to the editor and the referee for several suggestions which improved our manuscript. K. Dębicki was partially supported by National Science Centre Grant No. 2015/17/B/ST1/01102 (2016-2019). Research of K. Kosiński was conducted under scientific Grant No. 2014/12/S/ST1/00491 funded by National Science Centre.


  1. Asmussen, S.: Applied Probability and Queues. Springer 2nd edn (2003)Google Scholar
  2. Asmussen, S., Albrecher, H.: Ruin Probabilities. World Scientific Publishing Co. Inc., 2nd edn (2010)Google Scholar
  3. Dieker, A.B.: Extremes of Gaussian processes over an infinite horizon. Stoch. Process. Appl. 115, 207–248 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. Dębicki, K.: Ruin probability for Gaussian integrated processes. Stoch. Process. Appl. 98, 151–174 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. Dębicki, K., Kosiński, K.M.: An Erdös–Révész type law of the iterated logarithm for order statistics of a stationary Gaussian process. J. Theor. Probab. doi: 10.1007/s10959-016-0710-8 (2016)
  6. Dębicki, K., Liu, P.: Extremes of stationary Gaussian storage models. Extremes 19(2), 273–302 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. Hashorva, E., Ji, L., Piterbarg, V.I.: On the supremum of γ-reflected processes with fractional Brownian motion as input. Stoch. Process. Appl. 123, 4111–4127 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. Hüsler, J., Piterbarg, V.I.: Extremes of a certain class of Gaussian processes. Stoch. Process. Appl. 83, 257–271 (1999)MathSciNetCrossRefMATHGoogle Scholar
  9. Hüsler, J., Piterbarg, V.I.: On the ruin probability for physical fractional Brownian motion. Stoch. Process. Appl. 113, 315–332 (2004a)MathSciNetCrossRefMATHGoogle Scholar
  10. Hüsler, J., Piterbarg, V.I.: Limit theorem for maximum of the storage process with fractional Brownian motion as input. Stoch. Process. Appl. 114, 231–250 (2004b)MathSciNetCrossRefMATHGoogle Scholar
  11. Leadbetter, M.R., Lindgren, G., Rootzen, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, Berlin Heidelberg New York (1983)CrossRefMATHGoogle Scholar
  12. Liu, P., Hashorva, E., Ji, L.: On the γ-reflected processes with fBm input. Lith. Math. J 55(3), 402–412 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. Norros, I.: A storage model with self-similar input. Queueing Syst. 16, 387–396 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. Piterbarg, V.I.: Large deviations of a storage process with fractional Brownian motion as input. Extremes 4, 147–164 (2001)MathSciNetCrossRefMATHGoogle Scholar
  15. Qualls, C., Watanabe, H.: An asymptotic 0-1 behavior of Gaussian processes. Ann. Math. Stat. 42(6), 2029–2035 (1971)MathSciNetCrossRefMATHGoogle Scholar
  16. Shao, Q.-M.: An Erdös-Révész type law of the iterated logarithm for stationary Gaussian processes. Probab. Theory Relat. Fields 94(1), 119–133 (1992)MathSciNetCrossRefMATHGoogle Scholar
  17. Spitzer, F.: Principles of Random Walk. Van Nostrand, Princeton (1964)CrossRefMATHGoogle Scholar
  18. Watanabe, H.: An asymptotic property of Gaussian processes. Amer. Math. Soc. 148(1), 233–248 (1970)MathSciNetCrossRefMATHGoogle Scholar
  19. Zeevi, A.J., Glynn, P.W.: On the maximum workload of a queue fed by fractional Brownian motion. Ann. Appl. Probab. 10(4), 1084–1099 (2000)MathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of WrocławWrocławPoland

Personalised recommendations