, Volume 18, Issue 4, pp 529–561 | Cite as

An interview with Ross Leadbetter

  • Tailen Hsing
  • Holger Rootzén


Extreme value theory Extremal processes Stationary processes 

AMS 2000 Subject Classifications

Primary 01A70 Secondary 62G70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albin, J.M.P., Leadbetter, M.R.: Asymptotic behavior of conditional laws and moments of α-stable random vectors, with application to upcrossing intensities. Ann. Probab. 27, 1468–1500 (1999)MATHMathSciNetCrossRefGoogle Scholar
  2. Cambanis, S., Leadbetter, M.R., Pipiras, V.: A Basic Course in Measure and Probability: Theory for Applications. Cambridge University Press, Cambridge (2014)Google Scholar
  3. Cramér, H., Leadbetter, M.R.: The moments of the number of crossings of a level by a stationary normal process. Ann. Math. Stat. 36, 1656–1663 (1965)MATHCrossRefGoogle Scholar
  4. Cramér, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes: Sample Function Properties and Their Applications. Wiley, New York (2004). reprinted by DoverGoogle Scholar
  5. Cramér, H., Leadbetter, M.R., Serfling, R.J.: On distribution function - moment relationships in a stationary point process. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 18, 1–8 (1971)CrossRefGoogle Scholar
  6. Leadbetter, M.R.: On series expansions for the renewal moments. Biometrika 50, 75–80 (1963)MATHMathSciNetCrossRefGoogle Scholar
  7. Leadbetter, M.R.: Bounds on the error in the linear approximation to the renewal function. Biometrika 51, 355–364 (1964)MATHMathSciNetCrossRefGoogle Scholar
  8. Leadbetter, M.R.: On three basic results on the theory of stationary point processes. Proc. Am. Math. Soc. 19, 115–117 (1968)MATHMathSciNetCrossRefGoogle Scholar
  9. Leadbetter, M.R.: On extreme values in stationary sequences. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 28, 289–303 (1974)MATHMathSciNetCrossRefGoogle Scholar
  10. Leadbetter, M.R.: Extremes and local dependence in stationary sequences. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 65, 291–306 (1983)MATHMathSciNetCrossRefGoogle Scholar
  11. Leadbetter, M.R.: On a basis for peaks over threshold modeling. Statistics & Probability Letters 12, 357–362 (1991)MATHMathSciNetCrossRefGoogle Scholar
  12. Leadbetter, M.R., Rootzén, H.: Extremal theory for stochastic processes. Ann. Probab. 16, 431–478 (1988)MATHMathSciNetCrossRefGoogle Scholar
  13. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Wiley, New York (1983)MATHCrossRefGoogle Scholar
  14. Leadbetter, M.R., Weissman, I., De Haan, L., Rootzén, H.: On clustering of high values in statistically stationary series. Proc. 4th Int. Meet. Statistical Climatology 16, 217–222 (1989)Google Scholar
  15. Smith, W.L., Leadbetter, M.R.: On the renewal function for the Weibull distribution. Technometrics 5, 393–396 (1963)MATHCrossRefGoogle Scholar
  16. Watson, G.S., Leadbetter, M.R.: On the estimation of the probability density, I. Ann. Math. Stat. 34, 480–491 (1963)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of MichiganAnn ArborUSA
  2. 2.Department of Mathematical SciencesChalmers University of TechnologyGöteborgSweden
  3. 3.Department of Mathematical SciencesUniversity of GothenburgGothenburgSweden

Personalised recommendations