, Volume 18, Issue 1, pp 99–108 | Cite as

On probability of high extremes for product of two independent Gaussian stationary processes

  • Vladimir I. Piterbarg
  • Alexander Zhdanov


Let X(t), Y(t), t≥0, be two independent zero-mean stationary Gaussian processes, whose covariance functions are such that r i (t)=1−|t| a i +o(|t| a i ) as \(t\rightarrow 0\), with 0<a i ≤2, i=1,2 and both of the functions are less than one for non-zero t. We derive for any p the exact asymptotic behavior of the probability \(P(\max _{t\in \lbrack 0,p]}X(t)Y(t)>u)\) as \(u\rightarrow \infty \). We discuss possibilities generalizing obtained results to other Gaussian chaos processes h(X(t)), with a Gaussian vector process X(t) and a homogeneous function h of positive order.


Gaussian processes Gaussian chaos High extremes probabilities Double sum method 

AMS 2000 Subject Classifications

Primary 60G15 Secondary 60K30 60K40 60G70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Hashorva, E., Korshunov, D.A., Piterbarg, V.I.: On extremal behavior of gaussian chaos. Dokl. Math. 88, 566–568 (2013)CrossRefMATHMathSciNetGoogle Scholar
  2. Hashorva, E., Korshunov, D.A., Piterbarg, V.I.: Extremal Behavior of Gaussian Chaos via Geometric Approach. Extremes, submitted (2014)Google Scholar
  3. Piterbarg, V.I.: Asymptotic Methods in the Theory of Gaussian Processes and Fields. In: Transl. Math. Monographs, vol. 148. AMS, Providence, RI (1996)Google Scholar
  4. Piterbarg, V.I.: High excursions for nonstationary generalized chi-square processes. Stoch. Process Appl. 53, 307–337 (1994)CrossRefMATHMathSciNetGoogle Scholar
  5. Piterbarg, V., Stamatovic, S.: Limit Theorem for High Level a-Upcrossings by χ-Process. Theor. Probab. Appl. 48(4), 734–741 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Moscow Lomonosov State UniversityMoscowRussia

Personalised recommendations