, Volume 12, Issue 1, pp 53–76 | Cite as

A hybrid Pareto model for asymmetric fat-tailed data: the univariate case



Density estimators that can adapt to asymmetric heavy tails are required in many applications such as finance and insurance. Extreme value theory (EVT) has developed principled methods based on asymptotic results to estimate the tails of most distributions. However, the finite sample approximation might introduce a severe bias in many cases. Moreover, the full range of the distribution is often needed, not only the tail area. On the other hand, non-parametric methods, while being powerful where data are abundant, fail to extrapolate properly in the tail area. We put forward a non-parametric density estimator that brings together the strengths of non-parametric density estimation and of EVT. A hybrid Pareto distribution that can be used in a mixture model is proposed to extend the generalized Pareto (GP) to the whole real axis. Experiments on simulated data show the following. On one hand, the mixture of hybrid Paretos converges faster in terms of log-likelihood and provides good estimates of the tail of the distributions when compared with other density estimators including the GP distribution. On the other hand, the mixture of hybrid Paretos offers an alternate way to estimate the tail index which is comparable to the one estimated with the standard GP methodology. The mixture of hybrids is also evaluated on the Danish fire insurance data set.


Mixture model Fat-tailed data Extreme quantiles Generalized Pareto distribution 

AMS 2000 Subject Classifications

62G07 62G32 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Choulakian, V., Stephens, M.A.: Goodness-of-fit tests for the generalized Pareto distribution. Technometrics 43, 478–484 (2001)CrossRefMathSciNetGoogle Scholar
  2. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Mat. 5, 329–359 (1996)MATHCrossRefMathSciNetGoogle Scholar
  3. Danielsson, J., de Haan, L., Peng, L., de Vries, C.G.: Using the Bootstrap method to choose the sample fraction in tail index estimation. J. Multivar. Anal. 76, 226–248 (2001) (Sample: Extreme Quantile and Probability Estimation, Financial Markets Group)MATHCrossRefGoogle Scholar
  4. Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. R. Stat. Soc., Ser. B Stat. Methodol. 52, 393–442 (1990)MATHMathSciNetGoogle Scholar
  5. Dupuis, D.J.: Exceedances over high thresholds: a guide to threshold selection. Extremes 1, 251–261 (1998)CrossRefGoogle Scholar
  6. Embrechts, P., Kluppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer-Verlag, Berlin (1997)MATHGoogle Scholar
  7. Fama, E.F.: The behavior of stock market prices. J. Bus. 38, 34–105 (1965)CrossRefGoogle Scholar
  8. Frigessi, A., Haug, O., Rue, H.: A dynamic mixture model for unsupervised tail estimation without threshold selection. Extremes 5, 219–235 (2002)CrossRefMathSciNetGoogle Scholar
  9. Hosking, J.R.M., Wallis, J.R.: Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29, 339–349 (1987)MATHCrossRefMathSciNetGoogle Scholar
  10. Kang, S., Serfozo, R.F.: Extreme values of phase-type and mixed random variables with parallel-processing examples. J. Appl. Probab. 36, 194–210 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. Liu, C., Rubin, D.B., Liu, C., Rubin, D.B.: Weighted finite population sampling to maximize entropy. Biometrika 81, 633–648 (1994)MATHCrossRefMathSciNetGoogle Scholar
  12. Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 36, 394–419 (1963)CrossRefGoogle Scholar
  13. McNeil, A.J.: Estimating the tails of loss severity distributions using extreme value theory. ASTIN Bull. 27, 117–137 (1997)CrossRefGoogle Scholar
  14. McNeil, A.J., Frey, R.: Estimation of tail-related risk measures for heteroscedatic financial time series: an extreme value approach. J. Empir. Finance 7, 271–300 (2000)CrossRefGoogle Scholar
  15. Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3, 119–131 (1975)MATHCrossRefMathSciNetGoogle Scholar
  16. Pollard, D.: Strong consistency of the K-means clustering. Ann. Stat. 9, 135–140 (1981)MATHCrossRefMathSciNetGoogle Scholar
  17. Priebe, C.E.: Adaptive mixtures. J. Am. Stat. Assoc. 89, 796–806 (1994)MATHCrossRefMathSciNetGoogle Scholar
  18. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank Finance 26, 1443–1471 (2002)CrossRefGoogle Scholar
  19. Smith, R.L.: Maximum likelihood estimation in a class of nonregular cases. Biometrika 72, 67–90 (1985)MATHCrossRefMathSciNetGoogle Scholar
  20. Smith, R.L.: Estimating tails of probability distributions. Ann. Stat. 15, 1174–1207 (1987)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Dept. IROUniversity of MontrealMontrealCanada

Personalised recommendations