Thermoelastic evaluation of the payload module of the ARIEL mission

Abstract

The ARIEL mission is a space project consisting of a spacecraft with the goal of detecting exoplanets and observing the characteristics of their atmospheres. One of the main sub-systems of the payload is the telescope that must operate under cryogenic conditions to guarantee its adequate performance and the mission success. One of the critical aspects in the development of a space telescope is the stability and the related analyses required to evaluate the degree of deformation of the system under all environmental conditions, with special emphasis on the different and extreme temperature ranges reached during the mission. This assessment involves the close collaboration between three different disciplines: thermal, structural and optical design. This paper describes the work done in the ARIEL project in the field of the structural stability analysis, showing the process to achieve reliable and accurate results. The main novelty of this work is the validation of the structural model to achieve the required level of precision in the displacements fields calculated numerically to provide reliable and accurate deformations that will allow the assessment of the thermoelastic effects on the optical performance of the main telescope. The results of the structural simulations show how the telescope assembly is deformed under the different analysed conditions, which will allow the design of compensation mechanisms to mitigate these effects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Not applicable.

References

  1. 1.

    Pascale, E., Bezawada, N., Barstow, J., et al The ARIEL Space Mission. In: MacEwen HA, Lystrup M, Fazio GG, Et al. (Eds) Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave. SPIE, p 16 (2018)

  2. 2.

    Tinetti, G., Drossart, P., Eccleston, P., et al.: A chemical survey of exoplanets with ARIEL. Exp. Astron. 46, 135–209 (2018). https://doi.org/10.1007/s10686-018-9598-x

    ADS  Article  Google Scholar 

  3. 3.

    Eccleston, P., Swinyard, B., Tessenyi, M., et al.: The EChO payload instrument – an overview. Exp. Astron. 40, 427–447 (2015). https://doi.org/10.1007/s10686-014-9428-8

    ADS  Article  Google Scholar 

  4. 4.

    Parmentier, V., Showman, A.P., de Wit, J.: Unveiling the atmospheres of giant exoplanets with an EChO-class mission. Exp. Astron. 40, 481–500 (2015). https://doi.org/10.1007/s10686-014-9395-0

    ADS  Article  Google Scholar 

  5. 5.

    Tinetti, G., Drossart, P., Eccleston, P., et al.: The EChO science case. Exp. Astron. 40, 329–391 (2015). https://doi.org/10.1007/s10686-015-9484-8

    ADS  Article  Google Scholar 

  6. 6.

    Encrenaz, T., Tinetti, G., Coustenis, A.: Transit spectroscopy of temperate Jupiters with ARIEL: a feasibility study. Exp. Astron. 46, 31–44 (2018). https://doi.org/10.1007/s10686-017-9561-2

    ADS  Article  Google Scholar 

  7. 7.

    Zingales, T., Tinetti, G., Pillitteri, I., et al.: The ARIEL mission reference sample. Exp. Astron. 46, 67–100 (2018). https://doi.org/10.1007/s10686-018-9572-7

    ADS  Article  Google Scholar 

  8. 8.

    Da Deppo, V., Focardi, M., Middleton, K., et al.: An afocal telescope configuration for the ESA ARIEL mission. CEAS Sp J. 9, 379–398 (2017). https://doi.org/10.1007/s12567-017-0175-3

    ADS  Article  Google Scholar 

  9. 9.

    Puig, L., Pilbratt, G., Heske, A., et al.: The phase a study of the ESA M4 mission candidate ARIEL. Exp. Astron. 46, 211–239 (2018). https://doi.org/10.1007/s10686-018-9604-3

    ADS  Article  Google Scholar 

  10. 10.

    Chioetto P, Da Deppo V, Zuppella P, et al The Primary Mirror of the ARIEL Mission: Testing of a Modified Stress-Release Procedure for Al 6061 Cryogenic Opto-Mechanical Stability. In: EPSC-DPS Joint Metting. Geneva (2019)

  11. 11.

    Da Deppo, V., Pace, E., Morgante, G., et al The Primary Mirror of the ARIEL Mission: Study and Development of a Prototype. In: European Planetary Science Congress (2018)

  12. 12.

    Da Deppo, V., Pace, E., Morgante, G., et al Study and Realization of a Prototype of the Primary off-Axis 1-M Diameter Aluminium Mirror for the ESA ARIEL Mission. In: Karafolas N, Sodnik Z, Cugny B (Eds) International Conference on Space Optics — ICSO 2018. SPIE, p 246 (2019)

  13. 13.

    Newswander, T., Crowther, B., Gubbels, G., Senden, R. Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications. In: Robichaud JL, Krödel M, Goodman WA (eds) material technologies and applications to optics, structures, components, and sub-systems. P 883704 (2013)

  14. 14.

    Baro M, Conijn E, Dannenberg J, et al (2017) Apportionment and analysis of satellite pointing performance: illustrative use case of space systems engineering. In: 2017 IEEE international systems engineering symposium (ISSE). IEEE, pp 1–6

  15. 15.

    Sawruk, N., Albert, M., Litvinovitch, S., et al Structural thermal optical (STOP) analysis of the space-qualified laser transmitter for the ICESat-2 Mission. In: CLEO: 2013. OSA, San Jose, CA, pp. 1–2 (2013)

  16. 16.

    Morgante, G., Terenzi, L., D’Ascanio, D., et al Thermal Architecture of the ESA ARIEL Payload. In: MacEwen HA, Lystrup M, Fazio GG, Et al. (Eds) Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave. SPIE, p 154 (2018)

  17. 17.

    Villalba, V., Kuiper, H., Gill, E.: Review on thermal and mechanical challenges in the development of deployable space optics. J Astron Telesc Instruments, Syst. 6, 1 (2020). https://doi.org/10.1117/1.JATIS.6.1.010902

    Article  Google Scholar 

  18. 18.

    Burkhalter-Lindner, M., Davies, W. V., Schüngel, P.J., Schmid, B. Structural Design and Verification of the Planck Payload Module Structure. In: European Conference on Spacecraft Structures, Materials and Mechanical Testing. Noordwijk, The Netherlands (2005)

  19. 19.

    Banyal, R.K., Ravindra, B., Chatterjee, S.: Opto-thermal analysis of a lightweighted mirror for solar telescope. Opt. Express. 21, 7065 (2013). https://doi.org/10.1364/OE.21.007065

    ADS  Article  Google Scholar 

  20. 20.

    Maamar, F., Boudjemai, A.: Optomechanical optimal design configuration and analysis of glue pad bonds in lens mounting for space application. Adv Sp Res. 65, 2263–2275 (2020). https://doi.org/10.1016/j.asr.2020.01.025

    ADS  Article  Google Scholar 

  21. 21.

    Svendsen, S., Knudsen, E.B., Blake, S., et al Simulating the Effects of Thermoelastic Deformation on the THESEUS Soft X-Ray Imager Optics. In: Pareschi G, O’Dell SL (Eds) Optics for EUV, X-Ray, and Gamma-Ray Astronomy IX. SPIE, p 62 (2019)

  22. 22.

    Tse, L.A., Chang, Z., Somawardhana, R.P., Slimko, E., Structural, thermal, and optical performance (STOP) modeling and analysis for the surface water and ocean topography Mission. In: 48th international conference on environmental systems. Alburquerque, NM (2018)

  23. 23.

    Doytchinov, I., Shore, P., Nicquevert, B., et al.: Thermal effects compensation and associated uncertainty for large magnet assembly precision alignment. Precis. Eng. 59, 134–149 (2019). https://doi.org/10.1016/j.precisioneng.2019.06.005

    Article  Google Scholar 

  24. 24.

    Bourdeaud, M., Ponsy, J., Laborde, S., Corberand, P. Designing Satellites from the Main Thermo-Elastic Stability Contributors Quantification – Process and Tool Applied on Juice. In: European Conference on Spacecraft Structures, Materials and Mechanical Testing (2018)

  25. 25.

    Catanzaro, B., Doyle, D., Cohen, E. J. Herschel Space Telescope: Impact of new material strain data on optical test and model correlation. In: 2010 IEEE Aerospace Conference. IEEE, pp 1–9, (2010)

  26. 26.

    Fransen, S., Doyle, D., Catanzaro, B. Opto-mechanical modeling of the Herschel space telescope at ESA/ESTEC. In: Andersen T, Enmark a (eds) integrated modeling of complex Optomechanical systems. P 833604 (2011)

  27. 27.

    ECSS. ECSS-E-ST-32-03C, Space Engineering, Structural finite element models. ESA-ESTEC Requirements and Standards Division, Noordwijk, The Netherlands (2008)

  28. 28.

    Marquardt, E.D., Le, J.P., Radebaugh, R.: Cryogenic material properties database. In: Cryocoolers 11, pp. 681–687. Springer US, Boston, MA (2002)

    Google Scholar 

Download references

Code availability

Not applicable.

Funding

This work has been funded by the Spanish ministry “Ministerio de Ciencia, Innovación y Universidades” through project C19–00094-090.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrés García-Pérez.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Pérez, A., Alonso, G., Gómez-San-Juan, A. et al. Thermoelastic evaluation of the payload module of the ARIEL mission. Exp Astron (2021). https://doi.org/10.1007/s10686-021-09704-0

Download citation

Keywords

  • ARIEL
  • Thermoelastic
  • Finite element
  • Structural
  • Cryogenic
  • Space telescope