Skip to main content
Log in

Progress towards instrument miniaturisation for mid-IR long-baseline interferometry

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We report recent results on passive mid-infrared integrated optics from the project “Advanced Laser-writing for Stellar Interferometry” and shortly describe the perspectives of their hybridisation with active components for the benefit of the spectro-interferometry technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. acronym for ZrF4-BaF2-LaF3-AlF3-NaF.

References

  1. Arriola, A., Mukherjee, S., Choudhury, D., Labadie, L., Thomson, R.R.: Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry. Opt. Lett. 39, 4820 (2014). https://doi.org/10.1364/OL.39.004820. 1408.5953

    Article  ADS  Google Scholar 

  2. Arriola, A., Gross, S., Ams, M., Gretzinger, T., Le Coq, D., Wang, R.P., Ebendorff-Heidepriem, H., Sanghera, J., Bayya, L., Shaw, L.B., Ireland, M., Tuthill, P., Withford, M.J.: Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials. Opt. Mater. Express 7, 698 (2017)

    Article  ADS  Google Scholar 

  3. Benisty, M., Berger, J.P., Jocou, L., Labeye, P., Malbet, F., Perraut, K., Kern, P.: An integrated optics beam combiner for the second generation VLTI instruments. A&A 498, 601–613 (2009). https://doi.org/10.1051/0004-6361/200811083. 0902.2442

    Article  ADS  Google Scholar 

  4. Bérubé, J.P., Le Camus, A., Messaddeq, S.H., Petit, Y., Messaddeq, Y., Canioni, L., Valleé, R.: Femtosecond laser direct inscription of mid-IR transmitting waveguides in BGG glasses. Opt. Mater. Express 7, 3124 (2017)

    Article  ADS  Google Scholar 

  5. Bland-Hawthorn, J., Leon-Saval, S.G.: Astrophotonics: molding the flow of light in astronomical instruments. Opt. Express 25, 15,549 (2017). https://doi.org/10.1364/OE.25.015549. 1706.05132

    Article  Google Scholar 

  6. Butcher, H.L., Lee, D., Brownsword, R., MacLachlan, D.G., Thomson, R.R.: Ultrafast laser-inscribed mid-infrared transmission gratings in IG2: modelling and high-resolution spectral characterization. Opt. Express 25, 33,617 (2018). https://doi.org/10.1364/OE.25.016813

    Article  Google Scholar 

  7. Christodoulides, D.N., Lederer, F., Silberberg, Y.: Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003). https://doi.org/10.1038/nature01936

    Article  ADS  Google Scholar 

  8. Colavita, M.: Fringe visibility estimators for the palomar testbed interferometer. Publ. Astr. Soc. Pac. 111, 111–117 (1999)

    Article  ADS  Google Scholar 

  9. Coudé du Foresto, V., Ridgway, S.T.: Fluor - a stellar interferometer using single-mode fibers. In: Beckers, J.M., Merkle, F. (eds.) European Southern Observatory Conference and Workshop Proceedings, vol. 39, p. 731 (1992)

  10. Coudé du Foresto, V., Perrin, G., Boccas, M.: Minimization of fiber dispersion effects in double Fourier stellar interferometers. A&A 293, 278–286 (1995)

    ADS  Google Scholar 

  11. Diener, R., Minardi, S., Tepper, J., Nolte, S, Labadie, L.: All-in-one 4-telescope beam combination with a zig-zag array of waveguides. In: Proceedings of Optical and Infrared Interferometry and Imaging V, vol. 9907, p. 990731. SPIE (2016). https://doi.org/10.1117/12.2232290

  12. Diener, R., Tepper, J., Labadie, L., Pertsch, T., Nolte, S., Minardi, S.: Towards 3D-photonic, multi-telescope beam combiners for mid-infrared astrointerferometry. Opt. Express 25, 19,262 (2017). https://doi.org/10.1364/OE.25.019262

    Article  Google Scholar 

  13. Douglass, G., Dreisow, F., Gross, S., Nolte, S., Withford, M.J.: Towards femtosecond laser written arrayed waveguide gratings. Opt. Express 23 (16), 21,392–21,402 (2015). https://doi.org/10.1364/OE.23.021392. http://www.opticsexpress.org/abstract.cfm?URI=oe-23-16-21392

    Article  Google Scholar 

  14. Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011). https://doi.org/10.1038/nphoton.2011.309

    Article  ADS  Google Scholar 

  15. Eisenhauer, F., Perrin, G., Brandner, W., Straubmeier, C., Perraut, K., Amorim, A., Schöller, M., Gillessen, S., Kervella, P.: GRAVITY: observing the Universe in motion. The Messenger 143, 16–24 (2011)

    ADS  Google Scholar 

  16. Errmann, R., Minardi, S.: 6- and 8-telescope discrete beam combiners. In: Proceedings of Optical and Infrared Interferometry and Imaging V, vol. 9907, p. 990733. SPIE (2016). https://doi.org/10.1117/12.2232329

  17. Glezer, E.N., Milosavljevic, M., Huang, L., Finlay, R.J., Her, T.H., Callan, J.P., Mazur, E.: Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023–2025 (1996). https://doi.org/10.1364/OL.21.002023

    Article  ADS  Google Scholar 

  18. Gross, S., Withford, M.J.: Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 20 (2015). https://doi.org/10.1515/nanoph-2015-0020

    Article  ADS  Google Scholar 

  19. Hô, N., Phillips, M.C., Qiao, H., Allen, P.J., Krishnaswami, K., Riley, B.J., Myers, T.L., Anheier, JrN.C.: Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. Opt. Lett. 31, 1860–1862 (2006). https://doi.org/10.1364/OL.31.001860

    Article  ADS  Google Scholar 

  20. Hsiao, H.K., Winick, K.A., Monnier, J.D., Berger, J.P.: An infrared integrated optic astronomical beam combiner for stellar interferometry at 3-4 \(\mu \)m. Opt. Express 17, 18,489–18,500 (2009). 0911.1106

    Article  Google Scholar 

  21. Jovanovic, N., Tuthill, P.G., Norris, B., Gross, S., Stewart, P., Charles, N., Lacour, S., Ams, M., Lawrence, J.S., Lehmann, A., Niel, C., Robertson, J.G., Marshall, G.D., Ireland, M., Fuerbach, A., Withford, M.J.: Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging. MNRAS 427, 806–815 (2012). https://doi.org/10.1111/j.1365-2966.2012.21997.x. 1210.0603

    Article  ADS  Google Scholar 

  22. Kenchington Goldsmith, H.D., Cvetojevic, N., Ireland, M., Madden, S.: Fabrication tolerant chalcogenide mid-infrared multimode interference coupler design with applications for Bracewell nulling interferometry. Opt. Express 25, 3038 (2017). https://doi.org/10.1364/OE.25.003038. 1702.00468

    Article  ADS  Google Scholar 

  23. Kenchington Goldsmith, H.D., Ireland, M., Ma, P., Cevetojevic, N., Madden, S.: Improving the extinction bandwidth of MMI chalcogenide photonic chip based MIR nulling interferometers. Opt. Express 25, 16,813 (2017). https://doi.org/10.1364/OE.25.016813

    Article  Google Scholar 

  24. Khan, S., Chiles, J., Ma, J., Fathpour, S.: Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics. Appl. Phys. Lett. 102(12), 121104 (2013). https://doi.org/10.1063/1.4798557

    Article  ADS  Google Scholar 

  25. Labadie, L., Martín, G., Anheier, N.C., Arezki, B., Qiao, H.A., Bernacki, B., Kern, P.: First fringes with an integrated-optics beam combiner at 10 \(\mu \)m. A new step towards instrument miniaturization for mid-infrared interferometry. A&A 531, A48 (2011). https://doi.org/10.1051/0004-6361/201116727. 1104.2899

    Article  ADS  Google Scholar 

  26. Labadie, L., Martín, G., Ródenas, A., Anheier, N.C., Arezki, B., Thomson, R.R., Qiao, H.A., Kern, P., Kar, A.K., Bernacki, B.E.: Advances in the development of mid-infrared integrated devices for interferometric arrays. In: Proceedings of Optical and Infrared Interferometry III, vol. 8445, p. 844515 SPIE (2012). https://doi.org/10.1117/12.925636 1207.4811

  27. Labadie, L., Berger, J.P., Cvetojevic, N., Haynes, R., Harris, R., Jovanovic, N., Lacour, S., Martin, G., Minardi, S., Perrin, G. , Roth, M., Thomson, R.R.: Astronomical photonics in the context of infrared interferometry and high-resolution spectroscopy. In: Proceedings of Optical and Infrared Interferometry and Imaging V, vol. 9907, p. 990718. SPIE (2016). https://doi.org/10.1117/12.2230889. 1608.02640

  28. Le Bouquin, J.B., Berger, J.P., Lazareff, B., Zins, G., Haguenauer, P., Jocou, L., Kern, P., Millan-Gabet, R., Traub, W., Absil, O., Augereau, J.C., Benisty, M., Blind, N., Bonfils, X., Bourget, P., Delboulbe, A., Feautrier, P., Germain, M., Gitton, P. , Gillier, D., Kiekebusch, M., Kluska, J., Knudstrup, J., Labeye, P., Lizon, J.L., Monin, J.L., Magnard, Y., Malbet, F., Maurel, D., Ménard, F., Micallef, M., Michaud, L., Montagnier, G. , Morel, S., Moulin, T., Perraut, K., Popovic, D., Rabou, P., Rochat, S., Rojas, C., Roussel, F., Roux, A., Stadler, E., Stefl, S., Tatulli, E., Ventura, N.: PIONIER: a 4-telescope visitor instrument at VLTI. A&A 535, A67 (2011). https://doi.org/10.1051/0004-6361/201117586. 1109.1918

    Article  ADS  Google Scholar 

  29. Le Coarer, E., Blaize, S., Benech, P., Stefanon, I., Morand, A., Lérondel, G., Leblond, G., Kern, P., Fedeli, J.M., Royer, P.: Wavelength-scale stationary-wave integrated Fourier-transform spectrometry. Nat. Photonics 1, 473–478 (2007). https://doi.org/10.1038/nphoton.2007.138. 0708.0272

    Article  ADS  Google Scholar 

  30. Li, F., Jackson, S.D., Grillet, C., Magi, E., Hudson, D., Madden, S.J., Moghe, Y., ’Brien, C., Read, A., Duvall, S.G., Atanackovic, P., Eggleton, B.J. , Moss, D.J.: Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. Opt. Express 19, 15,212–15,220 (2011). https://doi.org/10.1364/OE.19.015212. 1705.10038

    Article  Google Scholar 

  31. Madden, G.E., Choudhury, D., MacPherson, W.N., Thomson, R.R.: Development of low-loss mid-infrared ultrafast laser inscribed waveguides. Opt. Eng. 56(7), 075102 (2017). https://doi.org/10.1117/1.OE.56.7.075102

    Article  ADS  Google Scholar 

  32. Martin, G., Heidmann, S., Rauch, J.Y., Jocou, L., Courjal, N.: Electro-optic fringe locking and photometric tuning using a two-stage Mach-Zehnder lithium niobate waveguide for high-contrast mid-infrared interferometry. Opt. Eng. 53(3), 034101 (2014). https://doi.org/10.1117/1.OE.53.3.034101

    Article  ADS  Google Scholar 

  33. Martin, G., Heidmann, S., Thomas, F., de Mengin, M., Jocou, L., Ulliac, G., Courjal, N., Morand, A., Benech, P., le Coarer, E.P.: Lithium Niobate active beam combiners: results of on-chip fringe locking, fringe scanning and high contrast integrated optics interferometry and spectrometry. In: Proceedings of Optical and Infrared Interferometry IV, vol. 9146, p. 91462I. SPIE (2014). https://doi.org/10.1117/12.2055516

  34. Martin, G., Pugnat, T., Gardillou, F., Cassagnettes, C., Barbier, D., Guyot, C., Hauden, J., Huby, E., Lacour, S.: Novel multi-telescopes beam combiners for next generation instruments (FIRST/SUBARU). In: Proceedings of Optical and Infrared Interferometry and Imaging V, vol. 9907, p. 990738. SPIE (2016). https://doi.org/10.1117/12.2233105

  35. Martin, G., Bhuyan, M., Troles, J., D’Amico, C., Stoian, R., Le Coarer, E.: Near infrared spectro-interferometer using femtosecond laser written GLS embedded waveguides and nano-scatterers. Opt. Express 25, 8386 (2017). https://doi.org/10.1364/OE.25.008386

    Article  ADS  Google Scholar 

  36. Mashanovich, G.Z., Milosević, M.M., Nedeljkovic, M., Owens, N., Xiong, B., Teo, E.J., Hu, Y.: Low loss silicon waveguides for the mid-infrared. Opt. Express 19, 7112 (2011). https://doi.org/10.1364/OE.19.007112

    Article  ADS  Google Scholar 

  37. Mennesson, B., Mariotti, J.M., Coudé du Foresto, V., Perrin, G., Ridgway, S., Ruilier, C., Traub, W.A., Carleton, N.P., Lacasse, M.G., Mazé, G.: Thermal infrared stellar interferometry using single-mode guided optics: first results with the TISIS experiment on IOTA. A&A 346, 181–189 (1999)

    ADS  Google Scholar 

  38. Minardi, S.: Nonlocality of coupling and the retrieval of field correlations with arrays of waveguides. Phys. Rev. A 92(1), 013804 (2015). https://doi.org/10.1103/PhysRevA.92.013804

    Article  ADS  Google Scholar 

  39. Minardi, S., Pertsch, T.: Interferometric beam combination with discrete optics. Opt. Lett. 35, 3009–3011 (2010)

    Article  ADS  Google Scholar 

  40. Minardi, S., Dreisow, F., Gräfe, M, Nolte, S., Pertsch, T.: Three-dimensional photonic component for multichannel coherence measurements. Opt. Lett. 37, 3030–3032 (2012)

    Article  ADS  Google Scholar 

  41. Minardi, S., Lacour, S., Berger, J.P., Labadie, L., Thomson, R.R., Haniff, C., Ireland, M.: Beam combination schemes and technologies for the Planet Formation Imager. In: Proceedings of Optical and infrared interferometry and imaging V, vol. 9907, p. 99071N. SPIE (2016). https://doi.org/10.1117/12.2232656. 1608.00586

  42. Nguyen, H.D., Ródenas, A., de Aldana, J.R.V., Martín, G., Martínez, J., Aguiló, M., Pujol, M.C. , Díaz, F.: Low-loss 3d-laser-written mid-infrared linbo3 depressed-index cladding waveguides for both te and tm polarizations. Opt. Express 25(4), 3722–3736 (2017). https://doi.org/10.1364/OE.25.003722 . http://www.opticsexpress.org/abstract.cfm?URI=oe-25-4-3722

    Article  ADS  Google Scholar 

  43. Ródenas, A., Martin, G., Arezki, B., Psaila, N., Jose, G., Jha, A., Labadie, L., Kern, P., Kar, A., Thomson, R.: Three-dimensional mid-infrared photonic circuits in chalcogenide glass. Opt. Lett. 37, 392 (2012). https://doi.org/10.1364/OL.37.000392. 1112.2546

    Article  ADS  Google Scholar 

  44. Saviauk, A., Minardi, S., Dreisow, F., Nolte, S., Pertsch, T.: 3D-integrated optics component for astronomical spectro-interferometry. Appl. Opt. 52, 4556 (2013). https://doi.org/10.1364/AO.52.004556

    Article  ADS  Google Scholar 

  45. Tatulli, E., LeBouquin, J.B.: Comparison of fourier and model-based estimators in single-mode multi-axial interferometry. Month Not. R. As. Soc. 368, 1159–1168 (2006)

    Article  ADS  Google Scholar 

  46. Tepper, J., Labadie, L., Diener, R., Minardi, S., Pott, J.U., Thomson, R., Nolte, S.: Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands. Astron. Astrophys. 602, A66 (2017). https://doi.org/10.1051/0004-6361/201630138 . 1704.05846

    Article  ADS  Google Scholar 

  47. Tepper, J., Labadie, L., Gross, S., Arriola, A., Minardi, S., Diener, R., Withford, M.J.: Ultrafast laser inscription in ZBLAN integrated optics chips for mid-IR beam combination in astronomical interferometry. Opt. Express 25, 20,642 (2017). https://doi.org/10.1364/OE.25.020642

    Article  Google Scholar 

  48. Thomson, R.R., Kar, A.K., Allington-Smith, J.: Ultrafast laser inscription: an enabling technology for astrophotonics. Opt. Express 17, 1963–1969 (2009). https://doi.org/10.1364/OE.17.001963. 0908.1325

    Article  ADS  Google Scholar 

  49. Vigreux, C., Escalier, R., Pradel, A., Bastard, L., Broquin, J.E., Zhang, X., Billeton, T., Parent, G., Barillot, M., Kirschner, V.: Telluride buried channel waveguides operating from 6 to 20 \(\mu \)m for photonic applications. Opt. Mater. 49, 218–223 (2015). https://doi.org/10.1016/j.optmat.2015.09.025

    Article  ADS  Google Scholar 

Download references

Acknowledgements

ALSI is funded by the German Ministry of Education and Research (BMBF) through contracts 05A14PK2 and 05A14SJA.

Near and mid-IR research activities on spectro-interferometers are funded by the Labex FOCUS and the Action Spécifique Haute Résolution Angulaire.

We thank the anonymous referee for his comments aiming at improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Labadie.

Additional information

This article is part of the Topical Collection on Future of Optical-infrared Interferometry in Europe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labadie, L., Minardi, S., Martín, G. et al. Progress towards instrument miniaturisation for mid-IR long-baseline interferometry. Exp Astron 46, 433–445 (2018). https://doi.org/10.1007/s10686-018-9589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-018-9589-y

Keywords

Navigation