Experimental Astronomy

, Volume 45, Issue 3, pp 351–362 | Cite as

Antenna data storage concept for phased array radio astronomical instruments

  • André W. Gunst
  • Gert H. Kruithof
Original Article


Low frequency Radio Astronomy instruments like LOFAR and SKA-LOW use arrays of dipole antennas for the collection of radio signals from the sky. Due to the large number of antennas involved, the total data rate produced by all the antennas is enormous. Storage of the antenna data is both economically and technologically infeasible using the current state of the art storage technology. Therefore, real-time processing of the antenna voltage data using beam forming and correlation is applied to achieve a data reduction throughout the signal chain. However, most science could equally well be performed using an archive of raw antenna voltage data coming straight from the A/D converters instead of capturing and processing the antenna data in real time over and over again. Trends on storage and computing technology make such an approach feasible on a time scale of approximately 10 years. The benefits of such a system approach are more science output and a higher flexibility with respect to the science operations. In this paper we present a radically new system concept for a radio telescope based on storage of raw antenna data. LOFAR is used as an example for such a future instrument.


Antenna arrays Software-defined instruments Astronomy Telescopes Architecture Signal processing Radio astronomy Big data 


  1. 1.
    van Haarlem, M.P. et al.: LOFAR: the low frequency Array. Astronomy & Astrophysics, 556(A2), 1–53, (2013)Google Scholar
  2. 2.
    Lonsdale, C.J., et al.: The Murchison widefield array: design overview. Proc. IEEE. 97(8), 1497–1506 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Ellingson, S.W., et al.: Design and commissioning of the LWA1 radio telescope. arXiv preprint arXiv. 1307, 0697 (2013)Google Scholar
  4. 4.
    Dewdney, P.E.: SKA1 system baseline design. Document number SKA-TEL-SKO-DD-001, Revision 1, (2013). Accessed 4 July 2017
  5. 5.
    Kant, G.W., et al.: EMBRACE: a multi-beam 20,000-element radio astronomical phased array antenna demonstrator. IEEE Trans. Antennas Propag. 59(6), 1990–2003 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    van Cappellen, W.A., et al.: MANTIS: the mid-frequency aperture Array transient and intensity-mapping system. White paper on arXiv. 1612, 07917 (2016)Google Scholar
  7. 7.
    Pankratius, V., Mattmann, C.: Computing in astronomy: to see the unseen. Computer. 47(9), 23–25 (2014)CrossRefGoogle Scholar
  8. 8.
    Thompson, A.R. et al.: Interferometry and synthesis in radio astronomy. Wiley-VCH, Weinheim, Germany (2007).
  9. 9.
    Moore, G.E.: Cramming more components onto integrated circuits. Electronics. 114–117 (1965)Google Scholar
  10. 10.
    Mack, C.: The multiple lives of Moore's law. Spectrum. IEEE. 52(4), 31–31 (2015)CrossRefGoogle Scholar
  11. 11.
    Walter, C.: Kryder's law. Sci. Am. 293(2), 32–33 (2005)CrossRefGoogle Scholar
  12. 12.
    Nielsen, J.: Nielsen’s Law of Internet Bandwidth. (1998). Accessed 31 May 2015
  13. 13.
    Emmendorfer, M.J., Cloonan, T.J.: Nielsen’s law vs. Nielsen TV viewership for network capacity planning. (2013) Accessed 31 May 2015
  14. 14.
    Heald, G., et al.: The LOFAR multifrequency snapshot sky survey (MSSS): status and results. American Astronomical Society Meeting Abstracts. 221 (2013)Google Scholar
  15. 15.
    Wijnholds, S.J., van der Veen, A.J.: Fundamental imaging limits of radio telescope arrays. Selected Topics in Signal Processing, IEEE Journal. 2(5), 613–623 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Patil, A.H., et al.: Upper limits on the 21 cm epoch of reionization power Spectrum from one night with LOFAR. Astrophys. J. 838(1), 65 (2017)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Norris, R.P.: Extragalactic radio continuum surveys and the transformation of radio astronomy. Nature Astronomy. 1, 671–678 (2017). ADSCrossRefGoogle Scholar
  18. 18.
    Fender, R., Bell, M.E.: Radio transients: an antediluvian review. Bulletin of the Astronomical Society of India (BASI). 39(315), 1–19 (2011)Google Scholar
  19. 19.
    Kunkel, J.M., Kuhn, M., Ludwig, T.: Exascale storage systems, an analytical study of expenses. Supercomputing frontiers and innovations. 1(1), (2014)Google Scholar
  20. 20.
    Gupta, al.: An economic perspective of disk vs. flash Media in Archival Storage. Proceedings of the 22th IEEE international symposium on modeling, analysis, And Simulation of Computer and Telecommunication Systems (MASCOTS 2014)Google Scholar
  21. 21.
    Floyer, D.: The Emergence of a New Architecture for Long-term Data Retention. (2014). Accessed 25 May 2015
  22. 22.
    Ke, J.H., Gao, H., Cartledge, J.C.: 400 Gbit/s single-carrier and 1 Tbit/s three-carrier superchannel signals using dual polarization 16-QAM with look-up table correction and optical pulse shaping. Opt. Express. 22(1), 71–84 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Dewdney, P.E.: SKA1-LOW configuration – Constraints & Performance Analysis. Document number SKA-TEL-SKO-0000557 Revision. 1 (2016)Google Scholar
  24. 24.
    Romein, J.W., et al.: Processing LOFAR telescope data in real time on a blue gene/P supercomputer. URSI General Assembly Scientific Symposium (2011)Google Scholar
  25. 25.
    Patil, A.H., et al.: Constraining the epoch of reionization with the variance statistic: simulations of the LOFAR case. Mon. Not. R. Astron. Soc. 443(2), 1113–1124 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Netherlands Institute for Radio Astronomy (ASTRON)Dwingeloothe Netherlands

Personalised recommendations