Experimental Astronomy

, Volume 45, Issue 1, pp 21–40 | Cite as

Improvements on Fresnel arrays for high contrast imaging

  • Roux Wilhem
  • Koechlin Laurent
Original Article


The Fresnel Diffractive Array Imager (FDAI) is based on a new optical concept for space telescopes, developed at Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France. For the visible and near-infrared it has already proven its performances in resolution and dynamic range. We propose it now for astrophysical applications in the ultraviolet with apertures from 6 to 30 meters, aimed at imaging in UV faint astrophysical sources close to bright ones, as well as other applications requiring high dynamic range. Of course the project needs first a probatory mission at small aperture to validate the concept in space. In collaboration with institutes in Spain and Russia, we will propose to board a small prototype of Fresnel imager on the International Space Station (ISS), with a program combining technical tests and astrophysical targets. The spectral domain should contain the Lyman-α line (λ = 121 nm). As part of its preparation, we improve the Fresnel array design for a better Point Spread Function in UV, presently on a small laboratory prototype working at 260 nm. Moreover, we plan to validate a new optical design and chromatic correction adapted to UV. In this article we present the results of numerical propagations showing the improvement in dynamic range obtained by combining and adapting three methods : central obturation, optimization of the bars mesh holding the Fresnel rings, and orthogonal apodization. We briefly present the proposed astrophysical program of a probatory mission with such UV optics.


Fresnel arrays Diffractive optics UV imaging Apodization High dynamic range High angular resolution Exoplanets 


  1. 1.
    Andersen, G.: Membrane photon sieve telescopes. Appl. Opt. 49(33), 6391–6394 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Attwood, D.: Soft X-rays and extreme ultraviolet radiation: principles and applications. Cambridge University Press, Cambridge (2007)Google Scholar
  3. 3.
    Cash, W.: Analytic modeling of starshades. ApJ 738, 76 (2011). ADSCrossRefGoogle Scholar
  4. 4.
    Faklis, D., Morris, G.M.: Broadband imaging with holographic lenses. Opt. Eng. 28(6), 286,592–286,592 (1989). CrossRefGoogle Scholar
  5. 5.
    Fresnel, A.J.: Mémoire sur la diffraction de la lumière. pp 339–475. (1818)
  6. 6.
    Gómez de Castro, AI: The Fresnel space imager as a disk evolution watcher. Exp. Astron. 30, 205–216 (2011). ADSCrossRefGoogle Scholar
  7. 7.
    Guyon, O., Pluzhnik, E.A., Galicher, R., Martinache, F., Ridgway, S.T., Woodruff, R.A.: Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle. Astrophys. J. 622, 744–758 (2005)., astro-ph/0412179 ADSCrossRefGoogle Scholar
  8. 8.
    Hinglais, E.: A space Fresnel imager concept assessment study led by CNES for astrophysical applications. Exp. Astron. 30, 85–110 (2011). ADSCrossRefGoogle Scholar
  9. 9.
    Koechlin, L.: The Fresnel Diffractive Imager for UV astrophysics: proposed test mission in space. In: 40th COSPAR Scientific Assembly, COSPAR Meeting, vol 40 (2014)Google Scholar
  10. 10.
    Koechlin, L., Serre, D., Duchon, P.: High resolution imaging with fresnel interferometric arrays: suitability for exoplanet detection. A&A 443 (2), 709–720 (2005). ADSCrossRefGoogle Scholar
  11. 11.
    Koechlin, L., Rivet, J.P., Deba, P., Serre, D., Raksasataya, T., Gili, R., David, J.: First high dynamic range and high resolution images of the sky obtained with a diffractive fresnel array telescope. Experimental Astronomy 33(1), 129–140 (2011). ADSCrossRefGoogle Scholar
  12. 12.
    Myers, O.E.: Studies of Transmission Zone Plates. Am. J. Phys. 19, 359–365 (1951). ADSCrossRefGoogle Scholar
  13. 13.
    Nisenson, P., Papaliolios, C.: Detection of earth-like planets using apodized telescopes. Astrophysical J. Lett. 548(2), L201 (2001). ADSCrossRefGoogle Scholar
  14. 14.
    Raksasataya, T., Deba, P., Rivet, J.P., Gili, R., Serre, D., Koechlin, L.: Fresnel diffractive imager: instrument for space mission in the visible and uv. In: Space Telescopes and Instrumentation: Ultraviolet to Gamma Ray, Proc. SPIE, vol 7732. (2010)
  15. 15.
    Raksasataya, T., Gomez de Castro, A.I., Koechlin, L., Rivet, J.P.: A space fresnel imager for ultra-violet astrophysics: example on accretion disks. Exp. Astron. 30(2), 183 (2011). ADSCrossRefGoogle Scholar
  16. 16.
    Roux, W., Koechlin, L.: Diffractive telescope for protoplanetary disks study in UV. In: Martins, F., Boissier, S., Buat, V., Cambresý, L., Petit, P. (eds.) SF2A-2015: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, pp 289–292. (2015)
  17. 17.
    Schupmann, L.: Die Medial-Fernrohre - Eine neue Konstruktion für große astronomische Instrumente. Teubner-Verlag, Berlin (1899)zbMATHGoogle Scholar
  18. 18.
    Serre, D.: The Fresnel imager: instrument numerical model. Exp. Astron. 30, 111–121 (2011). ADSCrossRefGoogle Scholar
  19. 19.
    Soret, J.L.: Sur les phénomènes de diffraction produits par les réseaux circulaires. Arch. Sci. Phys. Nat. 52, 320–337 (1875)Google Scholar
  20. 20.
    Vanderbei, R.J., Spergel, D.N., Kasdin, N.J.: Spiderweb masks for high-contrast imaging. Astrophys. J. 590(1), 593 (2003). = 1/a = 593 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.IRAP (Institut de Recherche en Astrophysique et Planétologie), CNRSUniversité de Toulouse, CNESToulouseFrance

Personalised recommendations