Advertisement

Experimental Astronomy

, Volume 40, Issue 2–3, pp 801–811 | Cite as

The Long wave (11–16 μm) spectrograph for the EChO M3 Mission Candidate study

  • N. E. Bowles
  • M. Tecza
  • J. K. Barstow
  • J. M. Temple
  • P. G. J. Irwin
  • L. N. Fletcher
  • S. Calcutt
  • J. Hurley
  • M. Ferlet
  • D. Freeman
Original Article

Abstract

The results for the design study of the Long Wave Infrared Module (LWIR), a goal spectroscopic channel for the EChO ESA medium class candidate mission, are presented. The requirements for the LWIR module were to provide coverage of the 11–16 μm spectral range at a moderate resolving power of at least R = 30, whilst minimising noise contributions above photon due to the thermal background of the EChO instrument and telescope, and astrophysical sources such as the zodiacal light. The study output module design is a KRS-6 prism spectrograph with aluminium mirror beam expander and coated germanium lenses for the final focusing elements. Thermal background considerations led to enclosing the beam in a baffle cooled to approximately 25–29 K. To minimise diffuse astrophysical background contributions due to the zodiacal light, anamorphic designs were considered in addition to the elliptical input beam provided by the EChO telescope. Given the requirement that measurements in this waveband place on the performance of the infrared detector array, an additional study on the likely scientific return with lower resolving power (R < 30) is included. If specific high priority molecules on moderately warm giant planets (e.g. CO2, H2O) are targeted, the LWIR channel can still provide improvements in determining the atmospheric temperature structure and molecular abundances. Thus, the inclusion of even a coarse-resolution (R≈10) LWIR module would still make an important contribution to measurements of exoplanet atmospheres made by EChO.

Keywords

EChO instrument Spectrometer Exoplanet transit spectroscopy 

Notes

Acknowledgments

Support for this work was provided by the United Kingdom Space Agency as part of UK EChO study team. We would also like to acknowledge the significant help and assistance provided throughout the study by the whole EChO team, especially B. Swinyard, P. Ecclestone, G. Tinetti and E. Pascale for many useful discussions.

References

  1. 1.
    Barstow, J., et al.: On the potential of the EChO mission to characterize gas giant atmospheres. MNRAS 430, 1188–1207 (2013)CrossRefADSGoogle Scholar
  2. 2.
    Cole, C., Bowen, J.W.: Synthesis of broadband anti-reflection coatings for spaceflight infrared optics. Proc. SPIE 2210, 506 (1994). doi: 10.1117/12.188109 CrossRefADSGoogle Scholar
  3. 3.
    Eccleston, P., Swinyard, B., Tessenyi, M., Tinetti, G., et al.: The EChO payload instrument – an overview. Exp. Astron. (2014). doi: 10.1007/s10686-014-9428-8 Google Scholar
  4. 4.
    Flasar, F.M., Kunde, V., Abbas, M., et al.: Exploring the saturn system in the thermal infrared: the composite infrared spectrometer. Space Sci. Rev. 115, 169–297 (2004)Google Scholar
  5. 5.
    Goldstein, F.: Filmstar thin film optical design software. http://www.ftgsoftware.com/ (2014). Accessed Dec 2014.
  6. 6.
    Hogue, H., et al.: Update on Blocked Impurity Band detector technology from DRS. Proc. SPIE 7780, 778004–778007 (2010)CrossRefGoogle Scholar
  7. 7.
    Irwin, P.G.J., et al.: The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J. Quant. Spectrosc. Radiat. Transf. 109, 1136–1150 (2008)CrossRefADSGoogle Scholar
  8. 8.
    Kunde, V. et al.: In Cassini/Huygens: a mission to the Saturnian systems. Horn, L. (ed). SPIE Proc. 2803(162) (1996).Google Scholar
  9. 9.
    Palik, E.D.: Handbook of optical constants of solids, vol. 3. Academic Press, Boston (1998)Google Scholar
  10. 10.
    Puig, L., Isaak, K., Linder, M., Escudero, I., Crouzet, P., et al.: The Phase 0/A study of the ESA M3 mission candidate EChO. Exp. Astron. (2014). doi: 10.1007/s10686-014-9419-9 Google Scholar
  11. 11.
    Reininger, F.M.: Infrared Phys. Technol. 42, 345–362 (2001)CrossRefADSGoogle Scholar
  12. 12.
    Ressler, et al.: Performance of the JWST/MIRI Si:As detectors. Proc. SPIE 7021, 70210 (2008). doi: 10.117/12.789606 CrossRefGoogle Scholar
  13. 13.
    Tinetti, G., et al.: EChO Exoplanet Characterisation observatory. Exp. Astron. 34, 311 (2012)CrossRefADSGoogle Scholar
  14. 14.
    Waldmann, I., Pascale, E.: Data analysis Pipeline for EChO end-to-end simulations. arXiv 1402, 4408 (2014)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • N. E. Bowles
    • 1
  • M. Tecza
    • 1
  • J. K. Barstow
    • 1
  • J. M. Temple
    • 1
  • P. G. J. Irwin
    • 1
  • L. N. Fletcher
    • 1
  • S. Calcutt
    • 1
  • J. Hurley
    • 2
  • M. Ferlet
    • 2
  • D. Freeman
    • 3
  1. 1.Department of PhysicsClarendon LaboratoryOxfordUK
  2. 2.Science and Technology Facilities CouncilRutherford Appleton LaboratoryDidcotUK
  3. 3.Kidger Optics AssociatesGreat MalvernUK

Personalised recommendations