Advertisement

Experimental Astronomy

, Volume 39, Issue 2, pp 405–421 | Cite as

Medicina array demonstrator: calibration and radiation pattern characterization using a UAV-mounted radio-frequency source

  • G. Pupillo
  • G. Naldi
  • G. Bianchi
  • A. Mattana
  • J. Monari
  • F. Perini
  • M. Poloni
  • M. Schiaffino
  • P. Bolli
  • A. Lingua
  • I. Aicardi
  • H. Bendea
  • P. Maschio
  • M. Piras
  • G. Virone
  • F. Paonessa
  • Z. Farooqui
  • A. Tibaldi
  • G. Addamo
  • O. A. Peverini
  • R. Tascone
  • S. J. Wijnholds
Original Article

Abstract

One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.

Keywords

Aperture arrays Square Kilometre Array Calibration techniques Antenna pattern Antenna measurements 

References

  1. 1.
    Dewdney, P.E., Hall, P.J., Schilizzi, R.T., Lazio, T.J.L.W.: The square kilometre array. Proc. IEEE 97(8), 1482–1496 (2009)ADSCrossRefGoogle Scholar
  2. 2.
  3. 3.
    Van Haarlem, M.P., et al.: LOFAR: the Low frequency array. Astron. Astrophys. 556(A2), 1–53 (2013). doi: 10.1051/0004-6361/201220873 Google Scholar
  4. 4.
    Raucy, C., et al.: “Low-cost near field pattern measurement technique for aperture array characterization,” in Proc. EuCAP, Goteborg, Sweden, pp. 661–665 (2013)Google Scholar
  5. 5.
    Virone, G., et al.: Antenna pattern verification system based on a micro Unmanned Aerial Vehicle (UAV). IEEE Antennas Wirel. Propag. Lett. 13, 169–172 (2014)Google Scholar
  6. 6.
    Virone, G., et al.: “Antenna pattern measurements with a flying far field source (hexacopter),” Proceedings of CAMA 2014, Antibes Juan-les-Pins, France (2014)Google Scholar
  7. 7.
    Bolli, P., et al.: Basic element for square kilometre array training (BEST): evaluation of the antenna noise temperature. IEEE Antennas Propag. Mag. 50(2), 58–65 (2008). doi: 10.1109/MAP.2008.4562257 ADSCrossRefGoogle Scholar
  8. 8.
    Chiabrando, F., Lingua, A., Piras, M.:“Direct photogrammetry using UAV: tests and first results,” ISPRS Archives, vol. XL-1/W2, pp. 81 86, UAV g2013, Rostock, Germany (2013)Google Scholar
  9. 9.
    Monari, J.et al.: “Aperture Array for Low Frequency: the Vivaldi solution”, International Conference on Electromagnetics in Advanced Applications (ICEAA), Turin, Italy (2013)Google Scholar
  10. 10.
    Bij de Vaate, J.G., et al.: “Low frequency aperture array developments for phase 1 SKA,” Proceedings URSI, Istanbul, Turkey (2011)Google Scholar
  11. 11.
    Perini, F., Bianchi, G., Schiaffino, M., Monari, J.: “BEST receiver experience: general architecture, design and integration”, Wide Field Science and Technology for the Square Kilometre Array, Proceedings of the SKADS Conference, Chateau de Limelette, Belgium (2009)Google Scholar
  12. 12.
    Tibaldi, A., et al.: Design considerations for a low-frequency Vivaldi array element, PIERS Proceedings, pp. 240–244, Stockholm (2013).Google Scholar
  13. 13.
    Murgia, M., et al.: “Sardinia aperture array demonstrator,” SPIE 9145, Ground-based and Airborne Telescopes V, 91454S (2014). doi:  10.1117/12.2055793

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • G. Pupillo
    • 1
  • G. Naldi
    • 1
  • G. Bianchi
    • 1
  • A. Mattana
    • 1
  • J. Monari
    • 1
  • F. Perini
    • 1
  • M. Poloni
    • 1
  • M. Schiaffino
    • 1
  • P. Bolli
    • 2
  • A. Lingua
    • 3
  • I. Aicardi
    • 3
  • H. Bendea
    • 3
  • P. Maschio
    • 3
  • M. Piras
    • 3
  • G. Virone
    • 4
  • F. Paonessa
    • 4
  • Z. Farooqui
    • 4
  • A. Tibaldi
    • 4
  • G. Addamo
    • 4
  • O. A. Peverini
    • 4
  • R. Tascone
    • 4
  • S. J. Wijnholds
    • 5
  1. 1.INAF - Istituto di RadioastronomiaBolognaItaly
  2. 2.INAF - Osservatorio Astrofisico di ArcetriFlorenceItaly
  3. 3.Politecnico di Torino - Dipartimento di Ingegneria dell’Ambientedel Territorio e delle InfrastruttureTorinoItaly
  4. 4.CNR - Istituto di Elettronica e di Ingegneria dell’Informazione e delle TelecomunicazioniTorinoItaly
  5. 5.Netherlands Institute for Radio AstronomyDwingelooThe Netherlands

Personalised recommendations